188 resultados para Random noise
Resumo:
A software tool (DRONE) has been developed to evaluate road traffic noise in a large area with the consideration of network dynamic traffic flow and the buildings. For more precise estimation of noise in urban network where vehicles are mainly in stop and go running conditions, vehicle sound power level (for acceleration/deceleration cruising and ideal vehicle) is incorporated in DRONE. The calculation performance of DRONE is increased by evaluating the noise in two steps of first estimating the unit noise database and then integrating it with traffic simulation. Details of the process from traffic simulation to contour maps are discussed in the paper and the implementation of DRONE on Tsukuba city is presented
Resumo:
This paper discusses the areawide Dynamic ROad traffic NoisE (DRONE) simulator, and its implementation as a tool for noise abatement policy evaluation. DRONE involves integrating a road traffic noise estimation model with a traffic simulator to estimate road traffic noise in urban networks. An integrated traffic simulation-noise estimation model provides an interface for direct input of traffic flow properties from simulation model to noise estimation model that in turn estimates the noise on a spatial and temporal scale. The output from DRONE is linked with a geographical information system for visual representation of noise levels in the form of noise contour maps.
Resumo:
A road traffic noise prediction model (ASJ MODEL-1998) has been integrated with a road traffic simulator (AVENUE) to produce the Dynamic areawide Road traffic NoisE simulator-DRONE. This traffic-noise-GIS based integrated tool is upgraded to predict noise levels in built-up areas. The integration of traffic simulation with a noise model provides dynamic access to traffic flow characteristics and hence automated and detailed predictions of traffic noise. The prediction is not only on the spatial scale but also on temporal scale. The linkage with GIS gives a visual representation to noise pollution in the form of dynamic areawide traffic noise contour maps. The application of DRONE on a real world built-up area is also presented.
Resumo:
The QUT-NOISE-TIMIT corpus consists of 600 hours of noisy speech sequences designed to enable a thorough evaluation of voice activity detection (VAD) algorithms across a wide variety of common background noise scenarios. In order to construct the final mixed-speech database, a collection of over 10 hours of background noise was conducted across 10 unique locations covering 5 common noise scenarios, to create the QUT-NOISE corpus. This background noise corpus was then mixed with speech events chosen from the TIMIT clean speech corpus over a wide variety of noise lengths, signal-to-noise ratios (SNRs) and active speech proportions to form the mixed-speech QUT-NOISE-TIMIT corpus. The evaluation of five baseline VAD systems on the QUT-NOISE-TIMIT corpus is conducted to validate the data and show that the variety of noise available will allow for better evaluation of VAD systems than existing approaches in the literature.
Resumo:
A combined specular reflection and diffusion model using the radiosity technique was developed to calculate road traffic noise level on residential balconies. The model is capable of numerous geometrical configurations for a single balcony situated in the centre of a street canyon. The geometry of the balcony and the street can be altered with width,length and height. The model was used to calculate for three different geometrical and acoustic absorption characteristics for a balcony. The calculated results are presented in this paper.
Resumo:
Quantitative studies of nascent entrepreneurs such as GEM and PSED are required to generate their samples by screening the adult population, usually by phone in developed economies. Phone survey research has recently been challenged by shifting patterns of ownership and response rates of landline versus mobile (cell) phones, particularly for younger respondents. This challenge is acutely intense for entrepreneurship which is a strongly age-dependent phenomenon. Although shifting ownership rates have received some attention, shifting response rates have remained largely unexplored. For the Australian GEM 2010 adult population study we conducted a dual-frame approach that allows comparison between samples of mobile and landline phones. We find a substantial response bias towards younger, male and metropolitan respondents for mobile phones – far greater than explained by ownership rates. We also found these response rate differences significantly biases the estimates of the prevalence of early stage entrepreneurship by both samples, even when each sample is weighted to match the Australian population.
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.
Resumo:
Objective: The global implementation of oral random roadside drug testing is relatively limited, and correspondingly, the literature that focuses on the effectiveness of this intervention is scant. This study aims to provide a preliminary indication of the impact of roadside drug testing in Queensland. Methods: A sample of Queensland motorists’ (N= 922) completed a self-report questionnaire to investigate their drug driving behaviour, as well as examine the perceived affect of legal sanctions (certainty, severity and swiftness) and knowledge of the countermeasure on their subsequent offending behaviour. Results: Analysis of the collected data revealed that approximately 20% of participants reported drug driving at least once in the last six months. Overall, there was considerable variability in respondent’s perceptions regarding the certainty, severity and swiftness of legal sanctions associated with the testing regime and a considerable proportion remained unaware of testing practices. In regards to predicting those who intended to drug driving again in the future, perceptions of apprehension certainty, more specifically low certainty of apprehension, were significantly associated with self-reported intentions to offend. Additionally, self-reported recent drug driving activity and frequent drug consumption were also identified as significant predictors, which indicates that in the current context, past behaviour is a prominent predictor of future behaviour. To a lesser extent, awareness of testing practices was a significant predictor of intending not to drug drive in the future. Conclusion: The results indicate that drug driving is relatively prevalent on Queensland roads, and a number of factors may influence such behaviour. Additionally, while the roadside testing initiative is beginning to have a deterrent impact, its success will likely be linked with targeted intelligence-led implementation in order to increase apprehension levels as well as the general deterrent effect.
Resumo:
This paper presents a method of voice activity detection (VAD) suitable for high noise scenarios, based on the fusion of two complementary systems. The first system uses a proposed non-Gaussianity score (NGS) feature based on normal probability testing. The second system employs a histogram distance score (HDS) feature that detects changes in the signal through conducting a template-based similarity measure between adjacent frames. The decision outputs by the two systems are then merged using an open-by-reconstruction fusion stage. Accuracy of the proposed method was compared to several baseline VAD methods on a database created using real recordings of a variety of high-noise environments.
Resumo:
This paper presents a method of voice activity detection (VAD) for high noise scenarios, using a noise robust voiced speech detection feature. The developed method is based on the fusion of two systems. The first system utilises the maximum peak of the normalised time-domain autocorrelation function (MaxPeak). The second zone system uses a novel combination of cross-correlation and zero-crossing rate of the normalised autocorrelation to approximate a measure of signal pitch and periodicity (CrossCorr) that is hypothesised to be noise robust. The score outputs by the two systems are then merged using weighted sum fusion to create the proposed autocorrelation zero-crossing rate (AZR) VAD. Accuracy of AZR was compared to state of the art and standardised VAD methods and was shown to outperform the best performing system with an average relative improvement of 24.8% in half-total error rate (HTER) on the QUT-NOISE-TIMIT database created using real recordings from high-noise environments.
Resumo:
Since the launch of the ‘Clean Delhi, Green Delhi’ campaign in 2003, slums have become a significant social and political issue in India’s capital city. Through this campaign, the state, in collaboration with Delhi’s middle class through the ‘Bhagidari system’ (literally translated as ‘participatory system’), aims to transform Delhi into a ‘world-class city’ that offers a sanitised, aesthetically appealing urban experience to its citizens and Western visitors. In 2007, Delhi won the bid to host the 2010 Commonwealth Games; since then, this agenda has acquired an urgent, almost violent, impetus to transform Delhi into an environmentally friendly, aesthetically appealing and ‘truly international city’. Slums and slum-dwellers, with their ‘filth, dirt, and noise’, have no place in this imagined city. The violence inflicted upon slum-dwellers, including the denial of their judicial rights, is justified on these accounts. In addition, the juridical discourse since 2000 has ‘re-problematised slums as ‘nuisance’. The rising antagonism of the middle-classes against the poor, supported by the state’s ambition to have a ‘world-class city’, has allowed a new rhetoric to situate the slums in the city. These representations articulate slums as homogenised spaces of experience and identity. The ‘illegal’ status of slum-dwellers, as encroachers upon public space, is stretched to involve ‘social, cultural, and moral’ decadence and depravity. This thesis is an ethnographic exploration of everyday life in a prominent slum settlement in Delhi. It sensually examines the social, cultural and political materiality of slums, and the relationship of slums with the middle class. In doing so, it highlights the politics of sensorial ordering of slums as ‘filthy, dirty, and noisy’ by the middle classes to calcify their position as ‘others’ in order to further segregate, exclude and discriminate the slums. The ethnographic experience in the slums, however, highlights a complex sensorial ordering and politics of its own. Not only are the interactions between diverse communities in slums highly restricted and sensually ordained, but the middle class is identified as a sensual ‘other’, and its sensual practices prohibited. This is significant in two ways. First, it highlights the multiplicity of social, cultural experience and engagement in the slums, thereby challenging its homogenised representation. Second, the ethnographic exploration allowed me to frame a distinct sense of self amongst the slums, which is denied in mainstream discourses, and allowed me to identify the slums’ own ’others’, middle class being one of them. This thesis highlights sound – its production, performances and articulations – as an act with social, cultural, and political implications and manifestations. ‘Noise’ can be understood as a political construct to identify ‘others’ – and both slum-dwellers and the middle classes identify different sonic practices as noise to situate the ‘other’ sonically. It is within this context that this thesis frames the position of Listener and Hearer, which corresponds to their social-political positions. These positions can be, and are, resisted and circumvented through sonic practices. For instance, amplification tactics in the Karimnagar slums, which are understood as ‘uncultured, callous activities to just create more noise’ by the slums’ middle-class neighbours, also serve definite purposes in shaping and navigating the space through the slums’ soundscapes, asserting a presence that is otherwise denied. Such tactics allow the residents to define their sonic territories and scope of sonic performances; they are significant in terms of exerting one’s position, territory and identity, and they are very important in subverting hierarchies. The residents of the Karimnagar slums have to negotiate many social, cultural, moral and political prejudices in their everyday lives. Their identity is constantly under scrutiny and threat. However, the sonic cultures and practices in the Karimnagar slums allow their residents to exert a definite sonic presence – which the middle class has to hear. The articulation of noise and silence is an act manifesting, referencing and resisting social, cultural, and political power and hierarchies.
Resumo:
Signal Processing (SP) is a subject of central importance in engineering and the applied sciences. Signals are information-bearing functions, and SP deals with the analysis and processing of signals (by dedicated systems) to extract or modify information. Signal processing is necessary because signals normally contain information that is not readily usable or understandable, or which might be disturbed by unwanted sources such as noise. Although many signals are non-electrical, it is common to convert them into electrical signals for processing. Most natural signals (such as acoustic and biomedical signals) are continuous functions of time, with these signals being referred to as analog signals. Prior to the onset of digital computers, Analog Signal Processing (ASP) and analog systems were the only tool to deal with analog signals. Although ASP and analog systems are still widely used, Digital Signal Processing (DSP) and digital systems are attracting more attention, due in large part to the significant advantages of digital systems over the analog counterparts. These advantages include superiority in performance,s peed, reliability, efficiency of storage, size and cost. In addition, DSP can solve problems that cannot be solved using ASP, like the spectral analysis of multicomonent signals, adaptive filtering, and operations at very low frequencies. Following the recent developments in engineering which occurred in the 1980's and 1990's, DSP became one of the world's fastest growing industries. Since that time DSP has not only impacted on traditional areas of electrical engineering, but has had far reaching effects on other domains that deal with information such as economics, meteorology, seismology, bioengineering, oceanology, communications, astronomy, radar engineering, control engineering and various other applications. This book is based on the Lecture Notes of Associate Professor Zahir M. Hussain at RMIT University (Melbourne, 2001-2009), the research of Dr. Amin Z. Sadik (at QUT & RMIT, 2005-2008), and the Note of Professor Peter O'Shea at Queensland University of Technology. Part I of the book addresses the representation of analog and digital signals and systems in the time domain and in the frequency domain. The core topics covered are convolution, transforms (Fourier, Laplace, Z. Discrete-time Fourier, and Discrete Fourier), filters, and random signal analysis. There is also a treatment of some important applications of DSP, including signal detection in noise, radar range estimation, banking and financial applications, and audio effects production. Design and implementation of digital systems (such as integrators, differentiators, resonators and oscillators are also considered, along with the design of conventional digital filters. Part I is suitable for an elementary course in DSP. Part II (which is suitable for an advanced signal processing course), considers selected signal processing systems and techniques. Core topics covered are the Hilbert transformer, binary signal transmission, phase-locked loops, sigma-delta modulation, noise shaping, quantization, adaptive filters, and non-stationary signal analysis. Part III presents some selected advanced DSP topics. We hope that this book will contribute to the advancement of engineering education and that it will serve as a general reference book on digital signal processing.