115 resultados para Random Forests Classifier
Resumo:
In this paper we investigate the distribution of the product of Rayleigh distributed random variables. Considering the Mellin-Barnes inversion formula and using the saddle point approach we obtain an upper bound for the product distribution. The accuracy of this tail-approximation increases as the number of random variables in the product increase.
Resumo:
Through a forest inventory in parts of the Amudarya river delta, Central Asia, we assessed the impact of ongoing forest degradation on the emissions of greenhouse gases (GHG) from soils. Interpretation of aerial photographs from 2001, combined with data on forest inventory in 1990 and field survey in 2003 provided comprehensive information about the extent and changes of the natural tugai riparian forests and tree plantations in the delta. The findings show an average annual deforestation rate of almost 1.3% and an even higher rate of land use change from tugai forests to land with only sparse tree cover. These annual rates of deforestation and forest degradation are higher than the global annual forest loss. By 2003, the tugai forest area had drastically decreased to about 60% compared to an inventory in 1990. Significant differences in soil GHG emissions between forest and agricultural land use underscore the impact of the ongoing land use change on the emission of soil-borne GHGs. The conversion of tugai forests into irrigated croplands will release 2.5 t CO2 equivalents per hectare per year due to elevated emissions of N2O and CH4. This demonstrates that the ongoing transformation of tugai forests into agricultural land-use systems did not only lead to a loss of biodiversity and of a unique ecosystem, but substantially impacts the biosphere-atmosphere exchange of GHG and soil C and N turnover processes.
Resumo:
Many state of the art vision-based Simultaneous Localisation And Mapping (SLAM) and place recognition systems compute the salience of visual features in their environment. As computing salience can be problematic in radically changing environments new low resolution feature-less systems have been introduced, such as SeqSLAM, all of which consider the whole image. In this paper, we implement a supervised classifier system (UCS) to learn the salience of image regions for place recognition by feature-less systems. SeqSLAM only slightly benefits from the results of training, on the challenging real world Eynsham dataset, as it already appears to filter less useful regions of a panoramic image. However, when recognition is limited to specific image regions performance improves by more than an order of magnitude by utilising the learnt image region saliency. We then investigate whether the region salience generated from the Eynsham dataset generalizes to another car-based dataset using a perspective camera. The results suggest the general applicability of an image region salience mask for optimizing route-based navigation applications.
Resumo:
Forest regulation is never far from the headlines. The recent COP 18 negotiations held in Doha towards the end of 2012 were criticized by observers for slowing the development of the ‘REDD+’ initiative and for marking the end of ‘Forest Day’, whilst in the last month controversy has arisen following reports that the World Bank’s investment in forestry-related projects has failed to address poverty or benefit local communities. Dr Rowena Maguire’s research focuses on international climate and forest regulation and indigenous and community groups rights and responsibilities in connection with environmental management. Her new book, Global Forest Governance, identifies the fundamental legal principles and governance requirements of Sustainable Forest Management, an introduction to which is provided in her article below.
Resumo:
utomatic pain monitoring has the potential to greatly improve patient diagnosis and outcomes by providing a continuous objective measure. One of the most promising methods is to do this via automatically detecting facial expressions. However, current approaches have failed due to their inability to: 1) integrate the rigid and non-rigid head motion into a single feature representation, and 2) incorporate the salient temporal patterns into the classification stage. In this paper, we tackle the first problem by developing a “histogram of facial action units” representation using Active Appearance Model (AAM) face features, and then utilize a Hidden Conditional Random Field (HCRF) to overcome the second issue. We show that both of these methods improve the performance on the task of pain detection in sequence level compared to current state-of-the-art-methods on the UNBC-McMaster Shoulder Pain Archive.
Resumo:
A big challenge for classification on text is the noisy of text data. It makes classification quality low. Many classification process can be divided into two sequential steps scoring and threshold setting (thresholding). Therefore to deal with noisy data problem, it is important to describe positive feature effectively scoring and to set a suitable threshold. Most existing text classifiers do not concentrate on these two jobs. In this paper, we propose a novel text classifier with pattern-based scoring that describe positive feature effectively, followed by threshold setting. The thresholding is based on score of training set, make it is simple to implement in other scoring methods. Experiment shows that our pattern-based classifier is promising.
Resumo:
Historically a significant gap between male and female wages has existed in the Australian labour market. Indeed this wage differential was institutionalised in the 1912 arbitration decision which determined that the basic female wage would be set at between 54 and 66 per cent of the male wage. More recently however, the 1969 and 1972 Equal Pay Cases determined that male/female wage relativities should be based upon the premise of equal pay for work of equal value. It is important to note that the mere observation that average wages differ between males and females is not sine qua non evidence of sex discrimination. Economists restrict the definition of wage discrimination to cases where two distinct groups receive different average remuneration for reasons unrelated to differences in productivity characteristics. This paper extends previous studies of wage discrimination in Australia (Chapman and Mulvey, 1986; Haig, 1982) by correcting the estimated male/female wage differential for the existence of non-random sampling. Previous Australian estimates of male/female human capital basedwage specifications together with estimates of the corresponding wage differential all suffer from a failure to address this issue. If the sample of females observed to be working does not represent a random sample then the estimates of the male/female wage differential will be both biased and inconsistent.
Resumo:
Highly sensitive infrared (IR) cameras provide high-resolution diagnostic images of the temperature and vascular changes of breasts. These images can be processed to emphasize hot spots that exhibit early and subtle changes owing to pathology. The resulting images show clusters that appear random in shape and spatial distribution but carry class dependent information in shape and texture. Automated pattern recognition techniques are challenged because of changes in location, size and orientation of these clusters. Higher order spectral invariant features provide robustness to such transformations and are suited for texture and shape dependent information extraction from noisy images. In this work, the effectiveness of bispectral invariant features in diagnostic classification of breast thermal images into malignant, benign and normal classes is evaluated and a phase-only variant of these features is proposed. High resolution IR images of breasts, captured with measuring accuracy of ±0.4% (full scale) and temperature resolution of 0.1 °C black body, depicting malignant, benign and normal pathologies are used in this study. Breast images are registered using their lower boundaries, automatically extracted using landmark points whose locations are learned during training. Boundaries are extracted using Canny edge detection and elimination of inner edges. Breast images are then segmented using fuzzy c-means clustering and the hottest regions are selected for feature extraction. Bispectral invariant features are extracted from Radon projections of these images. An Adaboost classifier is used to select and fuse the best features during training and then classify unseen test images into malignant, benign and normal classes. A data set comprising 9 malignant, 12 benign and 11 normal cases is used for evaluation of performance. Malignant cases are detected with 95% accuracy. A variant of the features using the normalized bispectrum, which discards all magnitude information, is shown to perform better for classification between benign and normal cases, with 83% accuracy compared to 66% for the original.
Resumo:
Classifier selection is a problem encountered by multi-biometric systems that aim to improve performance through fusion of decisions. A particular decision fusion architecture that combines multiple instances (n classifiers) and multiple samples (m attempts at each classifier) has been proposed in previous work to achieve controlled trade-off between false alarms and false rejects. Although analysis on text-dependent speaker verification has demonstrated better performance for fusion of decisions with favourable dependence compared to statistically independent decisions, the performance is not always optimal. Given a pool of instances, best performance with this architecture is obtained for certain combination of instances. Heuristic rules and diversity measures have been commonly used for classifier selection but it is shown that optimal performance is achieved for the `best combination performance' rule. As the search complexity for this rule increases exponentially with the addition of classifiers, a measure - the sequential error ratio (SER) - is proposed in this work that is specifically adapted to the characteristics of sequential fusion architecture. The proposed measure can be used to select a classifier that is most likely to produce a correct decision at each stage. Error rates for fusion of text-dependent HMM based speaker models using SER are compared with other classifier selection methodologies. SER is shown to achieve near optimal performance for sequential fusion of multiple instances with or without the use of multiple samples. The methodology applies to multiple speech utterances for telephone or internet based access control and to other systems such as multiple finger print and multiple handwriting sample based identity verification systems.
Resumo:
In a classification problem typically we face two challenging issues, the diverse characteristic of negative documents and sometimes a lot of negative documents that are closed to positive documents. Therefore, it is hard for a single classifier to clearly classify incoming documents into classes. This paper proposes a novel gradual problem solving to create a two-stage classifier. The first stage identifies reliable negatives (negative documents with weak positive characteristics). It concentrates on minimizing the number of false negative documents (recall-oriented). We use Rocchio, an existing recall based classifier, for this stage. The second stage is a precision-oriented “fine tuning”, concentrates on minimizing the number of false positive documents by applying pattern (a statistical phrase) mining techniques. In this stage a pattern-based scoring is followed by threshold setting (thresholding). Experiment shows that our statistical phrase based two-stage classifier is promising.
Resumo:
Purpose: Flat-detector, cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. Methods: The rich sources of prior information in IGRT are incorporated into a hidden Markov random field (MRF) model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk (OAR). The voxel labels are estimated using the iterated conditional modes (ICM) algorithm. Results: The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom (CIRS, Inc. model 062). The mean voxel-wise misclassification rate was 6.2%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. Conclusions: By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.
Resumo:
Background: Random Breath Testing (RBT) is the main drink driving law enforcement tool used throughout Australia. International comparative research considers Australia to have the most successful RBT program compared to other countries in terms of crash reductions (Erke, Goldenbeld, & Vaa, 2009). This success is attributed to the programs high intensity (Erke et al., 2009). Our review of the extant literature suggests that there is no research evidence that indicates an optimal level of alcohol breath testing. That is, we suggest that no research exists to guide policy regarding whether or not there is a point at which alcohol related crashes reach a point of diminishing returns as a result of either saturated or targeted RBT testing. Aims: In this paper we first provide an examination of RBTs and alcohol related crashes across Australian jurisdictions. We then address the question of whether or not an optimal level of random breath testing exists by examining the relationship between the number of RBTs conducted and the occurrence of alcohol-related crashes over time, across all Australian states. Method: To examine the association between RBT rates and alcohol related crashes and to assess whether an optimal ratio of RBT tests per licenced drivers can be determined we draw on three administrative data sources form each jurisdiction. Where possible data collected spans January 1st 2000 to September 30th 2012. The RBT administrative dataset includes the number of Random Breath Tests (RBTs) conducted per month. The traffic crash administrative dataset contains aggregated monthly count of the number of traffic crashes where an individual’s recorded BAC reaches or exceeds 0.05g/ml of alcohol in blood. The licenced driver data were the monthly number of registered licenced drivers spanning January 2000 to December 2011. Results: The data highlights that the Australian story does not reflective of all States and territories. The stable RBT to licenced driver ratio in Queensland (of 1:1) suggests a stable rate of alcohol related crash data of 5.5 per 100,000 licenced drivers. Yet, in South Australia were a relative stable rate of RBT to licenced driver ratio of 1:2 is maintained the rate of alcohol related traffic crashes is substantially less at 3.7 per 100,000. We use joinpoint regression techniques and varying regression models to fit the data and compare the different patterns between jurisdictions. Discussion: The results of this study provide an updated review and evaluation of RBTs conducted in Australia and examines the association between RBTs and alcohol related traffic crashes. We also present an evidence base to guide policy decisions for RBT operations.
Resumo:
The output harmonic quality of N series connected full-bridge dc-ac inverters is investigated. The inverters are pulse width modulated using a common reference signal but randomly phased carrier signals. Through analysis and simulation, probability distributions for inverter output harmonics and vector representations of N carrier phases are combined and assessed. It is concluded that a low total harmonic distortion is most likely to occur and will decrease further as N increases.
Resumo:
This paper details the processes and challenges involved in collecting inventory data from smallholder and community woodlots on Leyte Island, Philippines. Over the period from 2005 through to 2012, 253 woodlots at 170 sites were sampled as part of a large multidisciplinary project, resulting in a substantial timber inventory database. The inventory was undertaken to provide information for three separate but interrelated studies, namely (1) tree growth, performance and timber availability from private smallholder woodlots on Leyte Island; (2) tree growth and performance of mixed-species plantings of native species; and (3) the assessment of reforestation outcomes from various forms of reforestation. A common procedure for establishing plots within each site was developed and applied in each study, although the basis of site selection varied. A two-stage probability proportion to size sampling framework was developed to select smallholder woodlots for inclusion in the inventory. In contrast, community-based forestry woodlots were selected using stratified random sampling. Challenges encountered in undertaking the inventory were mostly associated with the need to consult widely before the commencement of the inventory and problems in identifying woodlots for inclusion. Most smallholder woodlots were only capable of producing merchantable volumes of less than 44 % of the site potential due to a lack of appropriate silviculture. There was a clear bimodal distribution of proportion that the woodlots comprised of the total smallholding area. This bimodality reflects two major motivations for smallholders to establish woodlots, namely timber production and to secure land tenure.