336 resultados para RECOGNITION MEMORY
Resumo:
Engineering graduates of today, face a working environment that assumes global mobility in the labour market. This challenge means, amongst universities worldwide, a demand to increase the globalisation of educational programs, context, and increase and support the mobility of students through mechanisms such as student exchange and double masters degrees. Engineering student mobility from Australia is low with only a few Engineering Faculties encouraging students to go internationally. This comparative study, using universities in Australia and Europe, of feedback from students who have been on exchange or proposing to go on exchange, employers and faculty addresses the motivators and barriers to student mobility and exchange from the perspectives of the university, faculty, students and employers. Recommendations will be presented on how student mobility and exchange can be improved, and mechanisms such as double Masters Degrees, dual accreditation and Erasmus Mundus 2009 – 2013 can be utilised to improve student mobility.
Resumo:
Principal Topic The Comprehensive Australian Study of Entrepreneurial Emergence (CAUSEE) represents the first Australian study to employ and extend the longitudinal and large scale systematic research developed for the Panel Study of Entrepreneurial Dynamics (PSED) in the US (Gartner, Shaver, Carter and Reynolds, 2004; Reynolds, 2007). This research approach addresses several shortcomings of other data sets including under coverage; selection bias; memory decay and hindsight bias, and lack of time separation between the assessment of causes and their assumed effects (Johnson et al 2006; Davidsson 2006). However, a remaining problem is that any a random sample of start-ups will be dominated by low potential, imitative ventures. In recognition of this issue CAUSEE supplemented PSED-type random samples with theoretically representative samples of the 'high potential' emerging ventures employing a unique methodology using novel multiple screening criteria. We define new ''high-potential'' ventures as new entrepreneurial innovative ventures with high aspirations and potential for growth. This distinguishes them from those ''lifestyle'' imitative businesses that start small and remain intentionally small (Timmons, 1986). CAUSEE is providing the opportunity to explore, for the first time, if process and outcomes of high potentials differ from those of traditional lifestyle firms. This will allows us to compare process and outcome attributes of the random sample with the high potential over sample of new firms and young firms. The attributes in which we will examine potential differences will include source of funding, and internationalisation. This is interesting both in terms of helping to explain why different outcomes occur but also in terms of assistance to future policymaking, given that high growth potential firms are increasingly becoming the focus of government intervention in economic development policies around the world. The first wave of data of a four year longitudinal study has been collected using these samples, allowing us to also provide some initial analysis on which to continue further research. The aim of this paper therefore is to present some selected preliminary results from the first wave of the data collection, with comparisons of high potential with lifestyle firms. We expect to see owing to greater resource requirements and higher risk profiles, more use of venture capital and angel investment, and more internationalisation activity to assist in recouping investment and to overcome Australia's smaller economic markets Methodology/Key Propositions In order to develop the samples of 'high potential' in the NF and YF categories a set of qualification criteria were developed. Specifically, to qualify, firms as nascent or young high potentials, we used multiple, partly compensating screening criteria related to the human capital and aspirations of the founders as well as the novelty of the venture idea, and venture high technology. A variety of techniques were also employed to develop a multi level dataset of sources to develop leads and firm details. A dataset was generated from a variety of websites including major stakeholders including the Federal and State Governments, Australian Chamber of Commerce, University Commercialisation Offices, Patent and Trademark Attorneys, Government Awards and Industry Awards in Entrepreneurship and Innovation, Industry lead associations, Venture Capital Association, Innovation directories including Australian Technology Showcase, Business and Entrepreneurs Magazines including BRW and Anthill. In total, over 480 industry, association, government and award sources were generated in this process. Of these, 74 discrete sources generated high potentials that fufilled the criteria. 1116 firms were contacted as high potential cases. 331 cases agreed to participate in the screener, with 279 firms (134 nascents, and 140 young firms) successfully passing the high potential criteria. 222 Firms (108 Nascents and 113 Young firms) completed the full interview. For the general sample CAUSEE conducts screening phone interviews with a very large number of adult members of households randomly selected through random digit dialing using screening questions which determine whether respondents qualify as 'nascent entrepreneurs'. CAUSEE additionally targets 'young firms' those that commenced trading from 2004 or later. This process yielded 977 Nascent Firms (3.4%) and 1,011 Young Firms (3.6%). These were directed to the full length interview (40-60 minutes) either directly following the screener or later by appointment. The full length interviews were completed by 594 NF and 514 YF cases. These are the cases we will use in the comparative analysis in this report. Results and Implications The results for this paper are based on Wave one of the survey which has been completed and the data obtained. It is expected that the findings will assist in beginning to develop an understanding of high potential nascent and young firms in Australia, how they differ from the larger lifestyle entrepreneur group that makes up the vast majority of the new firms created each year, and the elements that may contribute to turning high potential growth status into high growth realities. The results have implications for Government in the design of better conditions for the creation of new business, firms who assist high potentials in developing better advice programs in line with a better understanding of their needs and requirements, individuals who may be considering becoming entrepreneurs in high potential arenas and existing entrepreneurs make better decisions.
Resumo:
New product development projects are experiencing increasing internal and external project complexity. Complexity leadership theory proposes that external complexity requires adaptive and enabling leadership, which facilitates opportunity recognition (OR). We ask whether internal complexity also requires OR for increased adaptability. We extend a model of EO and OR to conclude that internal complexity may require more careful OR. This means that leaders of technically or structurally complex projects need to evaluate opportunities more carefully than those in projects with external or technological complexity.
Resumo:
This paper describes an extended case-based reasoning model that addresses the notion of situatedness in designing through constructive memory. The model is illustrated through an application for predicting the corrosion rate for a specific material on a specific building.
Resumo:
Drivers' ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks. Particularly, highway design reduces the driving task mainly to a lane-keeping one. It contributes to hypovigilance and road crashes as drivers are often not aware that their driving behaviour is impaired. Monotony increases fatigue, however, the fatigue community has mainly focused on endogenous factors leading to fatigue such as sleep deprivation. This paper focuses on the exogenous factor monotony which contributes to hypovigilance. Objective measurements of the effects of monotonous driving conditions on the driver and the vehicle's dynamics is systematically reviewed with the aim of justifying the relevance of the need for a mathematical framework that could predict hypovigilance in real-time. Although electroencephalography (EEG) is one of the most reliable measures of vigilance, it is obtrusive. This suggests to predict from observable variables the time when the driver is hypovigilant. Outlined is a vision for future research in the modelling of driver vigilance decrement due to monotonous driving conditions. A mathematical model for predicting drivers’ hypovigilance using information like lane positioning, steering wheel movements and eye blinks is provided. Such a modelling of driver vigilance should enable the future development of an in-vehicle device that detects driver hypovigilance in advance, thus offering the potential to enhance road safety and prevent road crashes.
Resumo:
This paper describes a novel framework for facial expression recognition from still images by selecting, optimizing and fusing ‘salient’ Gabor feature layers to recognize six universal facial expressions using the K nearest neighbor classifier. The recognition comparisons with all layer approach using JAFFE and Cohn-Kanade (CK) databases confirm that using ‘salient’ Gabor feature layers with optimized sizes can achieve better recognition performance and dramatically reduce computational time. Moreover, comparisons with the state of the art performances demonstrate the effectiveness of our approach.
Resumo:
This paper looks at the challenges presented for the Australian Library and Information Association by its role as the professional association responsible for ensuring the quality of Australian library technician graduates. There is a particular focus on the issue of course recognition, where the Association's role is complicated by the need to work alongside the national quality assurance processes that have been established by the relevant technical education authorities. The paper describes the history of course recognition in Australia; examines the relationship between course recognition and other quality measures; and describes the process the Association has undertaken recently to ensure appropriate professional scrutiny in a changing environment of accountability.
Resumo:
Previous studies have reported that patients with schizophrenia demonstrate impaired performance during working memory (WM) tasks. The current study aimed to determine whether WM impairments in schizophrenia are accompanied by reduced slow wave (SW) activity during on-line maintenance of mnemonic information. Event-related potentials were obtained from patients with schizophrenia and well controls as they performed a visuospatial delayed response task. On 50% of trials, a distractor stimulus was introduced during the delay. Compared with controls, patients with schizophrenia produced less SW memory negativity, particularly over the right hemisphere, together with reduced frontal enhancement of SW memory negativity in response to distraction. The results indicate that patients with schizophrenia generate less maintenance phase neuronal activity during WM performance, especially under conditions of distraction.
Resumo:
Examined whether discrete working memory deficits underlie positive, negative and disorganised symptoms of schizophrenia. 52 outpatients (mean age 37.5 yrs) with schizophrenia were studied using items drawn from the Positive and Negative Syndrome Scale (PANSS). Linear regression and correlational analyses were conducted to examine whether symptom dimension scores were related to performance on several tests of working memory function. Severity of negative symptoms correlated with reduced production of words during a verbal fluency task, impaired ability to hold letter and number sequences on-line and manipulate them simultaneously, reduced performance during a dual task, and compromised visuospatial working memory under distraction-free conditions. Severity of disorganisation symptoms correlated with impaired visuospatial working memory under conditions of distraction, failure of inhibition during a verbal fluency task, perseverative responding on a test of set-shifting ability, and impaired ability to judge the veracity of simple declarative statements. The present study provides evidence that the positive, negative and disorganised symptom dimensions of the PANSS constitute independent clusters, associated with unique patterns of working memory impairment.
Resumo:
It has been claimed that the symptoms of post-traumatic stress disorder (PTSD) can be ameliorated by eye-movement desensitization-reprocessing therapy (EMD-R), a procedure that involves the individual making saccadic eye-movements while imagining the traumatic event. We hypothesized that these eye-movements reduce the vividness of distressing images by disrupting the function of the visuospatial sketchpad (VSSP) of working memory, and that by doing so they reduce the intensity of the emotion associated with the image. This hypothesis was tested by asking non-PTSD participants to form images of neutral and negative pictures under dual task conditions. Their images were less vivid with concurrent eye-movements and with a concurrent spatial tapping task that did not involve eye-movements. In the first three experiments, these secondary tasks did not consistently affect participants' emotional responses to the images. However, Expt 4 used personal recollections as stimuli for the imagery task, and demonstrated a significant reduction in emotional response under the same dual task conditions. These results suggest that, if EMD-R works, it does so by reducing the vividness and emotiveness of traumatic images via the VSSP of working memory. Other visuospatial tasks may also be of therapeutic value.
Resumo:
This thesis investigates the problem of robot navigation using only landmark bearings. The proposed system allows a robot to move to a ground target location specified by the sensor values observed at this ground target posi- tion. The control actions are computed based on the difference between the current landmark bearings and the target landmark bearings. No Cartesian coordinates with respect to the ground are computed by the control system. The robot navigates using solely information from the bearing sensor space. Most existing robot navigation systems require a ground frame (2D Cartesian coordinate system) in order to navigate from a ground point A to a ground point B. The commonly used sensors such as laser range scanner, sonar, infrared, and vision do not directly provide the 2D ground coordi- nates of the robot. The existing systems use the sensor measurements to localise the robot with respect to a map, a set of 2D coordinates of the objects of interest. It is more natural to navigate between the points in the sensor space corresponding to A and B without requiring the Cartesian map and the localisation process. Research on animals has revealed how insects are able to exploit very limited computational and memory resources to successfully navigate to a desired destination without computing Cartesian positions. For example, a honeybee balances the left and right optical flows to navigate in a nar- row corridor. Unlike many other ants, Cataglyphis bicolor does not secrete pheromone trails in order to find its way home but instead uses the sun as a compass to keep track of its home direction vector. The home vector can be inaccurate, so the ant also uses landmark recognition. More precisely, it takes snapshots and compass headings of some landmarks. To return home, the ant tries to line up the landmarks exactly as they were before it started wandering. This thesis introduces a navigation method based on reflex actions in sensor space. The sensor vector is made of the bearings of some landmarks, and the reflex action is a gradient descent with respect to the distance in sensor space between the current sensor vector and the target sensor vec- tor. Our theoretical analysis shows that except for some fully characterized pathological cases, any point is reachable from any other point by reflex action in the bearing sensor space provided the environment contains three landmarks and is free of obstacles. The trajectories of a robot using reflex navigation, like other image- based visual control strategies, do not correspond necessarily to the shortest paths on the ground, because the sensor error is minimized, not the moving distance on the ground. However, we show that the use of a sequence of waypoints in sensor space can address this problem. In order to identify relevant waypoints, we train a Self Organising Map (SOM) from a set of observations uniformly distributed with respect to the ground. This SOM provides a sense of location to the robot, and allows a form of path planning in sensor space. The navigation proposed system is analysed theoretically, and evaluated both in simulation and with experiments on a real robot.
Resumo:
This paper presents Scatter Difference Nuisance Attribute Projection (SD-NAP) as an enhancement to NAP for SVM-based speaker verification. While standard NAP may inadvertently remove desirable speaker variability, SD-NAP explicitly de-emphasises this variability by incorporating a weighted version of the between-class scatter into the NAP optimisation criterion. Experimental evaluation of SD-NAP with a variety of SVM systems on the 2006 and 2008 NIST SRE corpora demonstrate that SD-NAP provides improved verification performance over standard NAP in most cases, particularly at the EER operating point.
Resumo:
New models of human cognition inspired by quantum theory could underpin information technologies that are better aligned with howwe recall information.
Resumo:
Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.