337 resultados para Quantum-mechanical Description
Resumo:
Through media such as newspapers, letterbox flyers, corporate brochures and television we are regularly confronted with descriptions for conventional (bricks 'n' mortar style) services. These representations vary in the terminology utilised, the depth of the description, the aspects of the service that are characterised and their applicability to candidate service requestors. Existing service catalogues (such as the Yellow Pages) provide little relief for service requestors from the burdensome task of discovering, comparing and substituting services. Add to this environment the rapidly evolving area of web services with its associated surfeit of standards, and the result is a considerably fragmented approach to the description of services. It leaves the reality of the Semantic Web somewhat clouded. --------- Let's consider service description briefly, before discussing our concerns with existing approaches to description. The act of describing is performed prior to advertising. This simple fact provides an interesting paradox as services cannot be described exactly before advertisement. This doesn't mean they can't be described comprehensively. By "exactly", we are referring to the fact that context provided by a service requestor (and their service needs) will alter the description of the service that is presented to the discoverer. For example, a service provider who operates a cinema wants to describe the price of their service. Let's say the advertised price is $15. They also want to state that a pensioner discount and a student discount is available which provides a 50% discount. A customer (i.e. service requestor) uses the cinema web site to purchase tickets online. They find the movie of their choice at a time that suits. However, its not until some context is provided by the requestor that the exact price is determined. The requestor might state that they are a pensioner. The same is applicable for a service requestor who purchases multiple tickets perhaps on behalf of other people. The disconnect between when the service is described and when a requestor provides context introduces challenges to the description process. A service provider would be ill-advised to offer independent descriptions that represent all the permutations possible for a single service. The descriptive effort would be prohibitive.
Resumo:
Partially aligned and oriented polyacrylonitrile(PAN)-based nanofibers were electrospun from PAN and SWNTs/PAN in the solution of dimethylformamide(DMF) to make the carbon nanofibers. The as-spun nanofibers were hot-stretched in an oven to enhance its orientation and crystallinity. Then it were stabilized at 250 square under a stretched stress, and carbonized at 1000 square in N-2 atmosphere by fixing the length of the stabilized nanofiber to convert them into carbon nanofibers. With this hot-stretched process and with the introduction of SWNTs, the mechanical properties will be enhanced correspondingly. The crystallinity of the stretched fibers confirmed by X-ray diffraction has also increased. For PAN nanofibers, the improved fiber alignment and crystallinity resulted in the increased mechanical properties, such as the modulus and tensile strength of the nanofibers. It was concluded that the hot-stretched nanofiber and the SWNTs/PAN nanofibers can be used as a potential precursor to produce high-performance carbon composites.
Resumo:
In truck manufacturing, the exhaust and air inlet pipes are specialized equipment that requires highly skilled, heavy machinery and small batch production methods. This paper describes a project to develop the computer numerically controlled (CNC) pipe bending process for a truck component manufacturer. The company supplies a huge range of heavy duty truck parts to the domestic market and is a significant supplier in Australia. The company has been using traditional methods of machine assisted manual pipe bending techniques. In a drive of continuous improvement, the company has acquired a pre-owned CNC bending machine capable of bending pipes automatically up to 25 bends. However, due to process mismatch, this machine is only used for single bending operation. The researchers studied the bending system and changed the manufacturing process. Using an example exhaust pipe as the benchmark, a significant drop of manufacturing lead time from 70 minutes to 40 minutes for each pipe was demonstrated. There was also a decrease of material cost due to the multiple bends part in one piece without cutting excessive materials for each single bend like it used to be.
Resumo:
Mechanical harmonic transmissions are relatively new kind of drives having several unusual features. For example, they can provide reduction ratio up to 500:1 in one stage, have very small teeth module compared to conventional drives and very large number of teeth (up to 1000) on a flexible gear. If for conventional drives manufacturing methods are well-developed, fabrication of large size harmonic drives presents a challenge. For example, how to fabricate a thin shell of 1.7m in diameter and wall thickness of 30mm having high precision external teeth at one end and internal splines at the other end? It is so flexible that conventional fabrication methods become unsuitable. In this paper special fabrication methods are discussed that can be used for manufacturing of large size harmonic drive components. They include electro-slag welding and refining, the use of special expandable devices to locate and hold a flexible gear, welding peripheral parts of disks with wear resistant materials with subsequent machining and others. These fabrication methods proved to be effective and harmonic drives built with the use of these innovative technologies have been installed on heavy metallurgical equipment and successfully tested.
Resumo:
Glass transition temperature of spaghetti sample was measured by thermal and rheological methods as a function of water content.
Resumo:
Following an early claim by Nelson & McEvoy suggesting that word associations can display `spooky action at a distance behaviour', a serious investigation of the potentially quantum nature of such associations is currently underway. In this paper quantum theory is proposed as a framework suitable for modelling the mental lexicon, specifically the results obtained from both intralist and extralist word association experiments. Some initial models exploring this hypothesis are discussed, and they appear to be capable of substantial agreement with pre-existing experimental data. The paper concludes with a discussion of some experiments that will be performed in order to test these models.
Resumo:
Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load bearing structural elements and non-load bearing structural elements (partitions) due to their advantages such as higher strength to weight ratio over the other structural materials such as hot-rolled steel, timber and concrete. Cold-formed steel members are often made from thin steel sheets and hence they are more susceptible to various buckling modes. Generally short columns are susceptible to local or distortional buckling while long columns to flexural or flexural-torsional buckling. Fire safety design of building structures is an essential requirement as fire events can cause loss of property and lives. Therefore it is essential to understand the fire performance of light gauge cold-formed steel structures under fire conditions. The buckling behaviour of cold-formed steel compression members under fire conditions is not well investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research, a detailed review was undertaken on the mechanical properties of light gauge cold-formed steels at elevated temperatures and the most reliable predictive models for mechanical properties and stress-strain models based on detailed experimental investigations were identified. Their accuracy was verified experimentally by carrying out a series of tensile coupon tests at ambient and elevated temperatures. As the second phase of this research, local buckling behaviour was investigated based on the experimental and numerical investigations at ambient and elevated temperatures. First a series of 91 local buckling tests was carried out at ambient and elevated temperatures on lipped and unlipped channels made of G250-0.95, G550-0.95, G250-1.95 and G450-1.90 cold-formed steels. Suitable finite element models were then developed to simulate the experimental conditions. These models were converted to ideal finite element models to undertake detailed parametric study. Finally all the ultimate load capacity results for local buckling were compared with the available design methods based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Part 1.2 and the direct strength method (DSM), and suitable recommendations were made for the fire design of cold-formed steel compression members subject to local buckling. As the third phase of this research, flexural-torsional buckling behaviour was investigated experimentally and numerically. Two series of 39 flexural-torsional buckling tests were undertaken at ambient and elevated temperatures. The first series consisted 2800 mm long columns of G550-0.95, G250-1.95 and G450-1.90 cold-formed steel lipped channel columns while the second series contained 1800 mm long lipped channel columns of the same steel thickness and strength grades. All the experimental tests were simulated using a suitable finite element model, and the same model was used in a detailed parametric study following validation. Based on the comparison of results from the experimental and parametric studies with the available design methods, suitable design recommendations were made. This thesis presents a detailed description of the experimental and numerical studies undertaken on the mechanical properties and the local and flexural-torsional bucking behaviour of cold-formed steel compression member at ambient and elevated temperatures. It also describes the currently available ambient temperature design methods and their accuracy when used for fire design with appropriately reduced mechanical properties at elevated temperatures. Available fire design methods are also included and their accuracy in predicting the ultimate load capacity at elevated temperatures was investigated. This research has shown that the current ambient temperature design methods are capable of predicting the local and flexural-torsional buckling capacities of cold-formed steel compression members at elevated temperatures with the use of reduced mechanical properties. However, the elevated temperature design method in Eurocode 3 Part 1.2 is overly conservative and hence unsuitable, particularly in the case of flexural-torsional buckling at elevated temperatures.
Resumo:
Science has been under attack in the last thirty years, and recently a number of prominent scientists have been busy fighting back. Here, an argument is presented that the `science wars' stem from an unreasonably strict adherence to the reductive method on the part of science, but that weakening this stance need not imply a lapse into subjectivity. One possible method for formalising the description of non-separable, contextually dependent complex systems is presented. This is based upon a quantum-like approach.