547 resultados para Process monitoring
Resumo:
Continuous monitoring of diesel engine performance is critical for early detection of fault developments in an engine before they materialize into a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few nonintrusive condition monitoring techniques that can be utilized for such a task. Furthermore, the technique is more suitable for mass industry deployments than other non-intrusive methods such as vibration and acoustic emission techniques due to the low instrumentation cost, smaller data size and robust signal clarity since IAS is not affected by the engine operation noise and noise from the surrounding environment. A combination of IAS and order analysis was employed in this experimental study and the major order component of the IAS spectrum was used for engine loading estimation and fault diagnosis of a four-stroke four-cylinder diesel engine. It was shown that IAS analysis can provide useful information about engine speed variation caused by changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectra directly associated with the engine firing frequency (at twice the mean shaft rotating speed) can be utilized to estimate engine loading condition regardless of whether the engine is operating at healthy condition or with faults. The amplitude of this order component follows a distinctive exponential curve as the loading condition changes. A mathematical relationship was then established in the paper to estimate the engine power output based on the amplitude of this order component of the IAS spectrum. It was further illustrated that IAS technique can be employed for the detection of a simulated exhaust valve fault in this study.
Resumo:
In this paper, a novel data-driven approach to monitoring of systems operating under variable operating conditions is described. The method is based on characterizing the degradation process via a set of operation-specific hidden Markov models (HMMs), whose hidden states represent the unobservable degradation states of the monitored system while its observable symbols represent the sensor readings. Using the HMM framework, modeling, identification and monitoring methods are detailed that allow one to identify a HMM of degradation for each operation from mixed-operation data and perform operation-specific monitoring of the system. Using a large data set provided by a major manufacturer, the new methods are applied to a semiconductor manufacturing process running multiple operations in a production environment.
Resumo:
Frequency domain spectroscopy (FDS) is being used to assess the insulation condition of oil–paper power transformers. However, it has to date only been implemented on de-energised transformers, which requires the transformers to be shut down for an extended period and may cause significant costs. To solve this issue, a newly improved monitoring method based on the FDS principle is proposed to implement the dielectric measurement on energised transformers. Moreover, a chirp waveform excitation and its novel processing method are introduced. Compared with the conventional FDS results, dielectric results from the energised insulation system have higher tanδ values because of the increased losses. To further understand the insulation ageing process, the effects of the geometric capacitance are removed from the measured imaginary admittance of the insulation system to enhance the ageing signature. The resulting imaginary admittance is then shown to correlate well with the central time constant in return voltage measurements results. The proposed methods address the issues on techniques used on energised transformers and provide a clue for on-line FDS diagnostic application.
Resumo:
Frequency Domain Spectroscopy (FDS) is successfully being used to assess the insulation condition of oil filled power transformers. However, it has to date only been implemented on de-energized transformers, which requires the transformers to be shut down for an extended period which can result in significant costs. To solve this issue, a method of implementing FDS under energized condition is proposed here. A chirp excitation waveform is used to replace the conventional sinusoidal waveform to reduce the measurement time in this method. Investigation of the dielectric response under the influence of a high voltage stress at power frequency is reported based on experimental results. To further understand the insulation ageing process, the geometric capacitance effect is removed to enhance the detection of the ageing signature. This enhancement enables the imaginary part of admittance to be used as a new indicator to assess the ageing status of the insulation.
Resumo:
Business Process Management describes a holistic management approach for the systematic design, modeling, execution, validation, monitoring and improvement of organizational business processes. Traditionally, most attention within this community has been given to control-flow aspects, i.e., the ordering and sequencing of business activities, oftentimes in isolation with regards to the context in which these activities occur. In this paper, we propose an approach that allows executable process models to be integrated with Geographic Information Systems. This approach enables process models to take geospatial and other geographic aspects into account in an explicit manner both during the modeling phase and the execution phase. We contribute a structured modeling methodology, based on the well-known Business Process Model and Notation standard, which is formalized by means of a mapping to executable Colored Petri nets. We illustrate the feasibility of our approach by means of a sustainability-focused case example of a process with important ecological concerns.
Resumo:
In the structural health monitoring (SHM) field, long-term continuous vibration-based monitoring is becoming increasingly popular as this could keep track of the health status of structures during their service lives. However, implementing such a system is not always feasible due to on-going conflicts between budget constraints and the need of sophisticated systems to monitor real-world structures under their demanding in-service conditions. To address this problem, this paper presents a comprehensive development of a cost-effective and flexible vibration DAQ system for long-term continuous SHM of a newly constructed institutional complex with a special focus on the main building. First, selections of sensor type and sensor positions are scrutinized to overcome adversities such as low-frequency and low-level vibration measurements. In order to economically tackle the sparse measurement problem, a cost-optimized Ethernet-based peripheral DAQ model is first adopted to form the system skeleton. A combination of a high-resolution timing coordination method based on the TCP/IP command communication medium and a periodic system resynchronization strategy is then proposed to synchronize data from multiple distributed DAQ units. The results of both experimental evaluations and experimental–numerical verifications show that the proposed DAQ system in general and the data synchronization solution in particular work well and they can provide a promising cost-effective and flexible alternative for use in real-world SHM projects. Finally, the paper demonstrates simple but effective ways to make use of the developed monitoring system for long-term continuous structural health evaluation as well as to use the instrumented building herein as a multi-purpose benchmark structure for studying not only practical SHM problems but also synchronization related issues.
Resumo:
Despite recent efforts to assess the release of nanoparticles to the workplace during different nanotechnology activities, the existence of a generalizable trend in the particle release has yet to be identified. This study aimed to characterize the release of synthetic clay nanoparticles from a laboratory-based jet milling process by quantifying the variations arising from primary particle size and surface treatment of the material used, as well as the feed rate of the machine. A broad range of materials were used in this study, and the emitted particles mass (PM2.5) and number concentrations (PNC) were measured at the release source. Analysis of variance, followed by linear mixed-effects modeling, was applied to quantify the variations in PM2.5 and PNC of the released particles caused by the abovementioned factors. The results confirmed that using materials of different primary size and surface treatment affects the release of the particles from the same process by causing statistically-significant variations in PM2.5 and PNC. The interaction of these two factors should also be taken into account as it resulted in variations in the measured particles release properties. Furthermore, the feed rate of the milling machine was confirmed to be another influencing parameter. Although this research does not identify a specific pattern in the release of synthetic clay nanoparticles from the jet milling process generalizable to other similar settings, it emphasizes that each tested case should be handled individually in terms of exposure considerations.
Resumo:
The Source Monitoring Framework is a promising model of constructive memory, yet fails because it is connectionist and does not allow content tagging. The Dual-Process Signal Detection Model is an improvement because it reduces mnemic qualia to a single memory signal (or degree of belief), but still commits itself to non-discrete representation. By supposing that ‘tagging’ means the assignment of propositional attitudes to aggregates of anemic characteristics informed inductively, then a discrete model becomes plausible. A Bayesian model of source monitoring accounts for the continuous variation of inputs and assignment of prior probabilities to memory content. A modified version of the High-Threshold Dual-Process model is recommended to further source monitoring research.
Resumo:
This paper addresses the problem of predicting the outcome of an ongoing case of a business process based on event logs. In this setting, the outcome of a case may refer for example to the achievement of a performance objective or the fulfillment of a compliance rule upon completion of the case. Given a log consisting of traces of completed cases, given a trace of an ongoing case, and given two or more possible out- comes (e.g., a positive and a negative outcome), the paper addresses the problem of determining the most likely outcome for the case in question. Previous approaches to this problem are largely based on simple symbolic sequence classification, meaning that they extract features from traces seen as sequences of event labels, and use these features to construct a classifier for runtime prediction. In doing so, these approaches ignore the data payload associated to each event. This paper approaches the problem from a different angle by treating traces as complex symbolic sequences, that is, sequences of events each carrying a data payload. In this context, the paper outlines different feature encodings of complex symbolic sequences and compares their predictive accuracy on real-life business process event logs.
Resumo:
The care processes of healthcare providers are typically considered as human-centric, flexible, evolving, complex and multi-disciplinary. Consequently, acquiring an insight in the dynamics of these care processes can be an arduous task. A novel event log based approach for extracting valuable medical and organizational information on past executions of the care processes is presented in this study. Care processes are analyzed with the help of a preferential set of process mining techniques in order to discover recurring patterns, analyze and characterize process variants and identify adverse medical events.
Resumo:
Change point estimation is recognized as an essential tool of root cause analyses within quality control programs as it enables clinical experts to search for potential causes of change in hospital outcomes more effectively. In this paper, we consider estimation of the time when a linear trend disturbance has occurred in survival time following an in-control clinical intervention in the presence of variable patient mix. To model the process and change point, a linear trend in the survival time of patients who underwent cardiac surgery is formulated using hierarchical models in a Bayesian framework. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. We use Markov Chain Monte Carlo to obtain posterior distributions of the change point parameters including the location and the slope size of the trend and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time cumulative sum control chart (CUSUM) control charts for different trend scenarios. In comparison with the alternatives, step change point model and built-in CUSUM estimator, more accurate and precise estimates are obtained by the proposed Bayesian estimator over linear trends. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.
Resumo:
This study evaluates the effectiveness and social implications of home monitoring of 31 infants at risk of sudden infant death syndrome (SIDS). Thirteen siblings of children dying of SIDS, nine near miss SIDS infants and nine preterm infants with apnoea persisting beyond 40 weeks post conceptual age were monitored from a mean age of 15 days to a mean of 10 months. Chest movement detection monitors were used in 27 and thoracic impedance monitors in four. Genuine apnoeic episodes were reported by 21 families, and 13 infants required resuscitation. Apnoeic episodes occurred in all nine preterm infants but in only five (38%) of the siblings of SIDS (P<0.05). Troublesome false alarms were a major problem occurring with 61% of the infants and were more common with the preterm infants than the siblings of SIDS. All but two couples stated that the monitor decreased anxiety and improved their quality of life. Most parents accepted that the social restrictions imposed by the monitor were part of the caring process but four couples were highly resentful of the changes imposed on their lifestyle. The monitors used were far from ideal with malfunction occurring in 17, necessitating replacement in six, repair in six and cessation of monitoring in three. The parents became ingenious in modifying the monitors to their own individual requirements Although none of these 31 ‘at risk’ infants died the study sample was far too small to conclude whether home monitoring prevented any cases of SIDS.
Resumo:
In the field of workplace air quality, measuring and analyzing the size distribution of airborne particles to identify their sources and apportion their contribution has become widely accepted, however, the driving factors that influence this parameter, particularly for nanoparticles (< 100 nm), have not been thoroughly determined. Identification of driving factors, and in turn, general trends in size distribution of emitted particles would facilitate the prediction of nanoparticles’ emission behavior and significantly contribute to their exposure assessment. In this study, a comprehensive analysis of the particle number size distribution data, with a particular focus on the ultrafine size range of synthetic clay particles emitted from a jet milling machine was conducted using the multi-lognormal fitting method. The results showed relatively high contribution of nanoparticles to the emissions in many of the tested cases, and also, that both surface treatment and feed rate of the machine are significant factors influencing the size distribution of the emitted particles of this size. In particular, applying surface treatments and increasing the machine feed rate have the similar effect of reducing the size of the particles, however, no general trend was found in variations of size distribution across different surface treatments and feed rates. The findings of our study demonstrate that for this process and other activities, where no general trend is found in the size distribution of the emitted airborne particles due to dissimilar effects of the driving factors, each case must be treated separately in terms of workplace exposure assessment and regulations.