60 resultados para Probabilistic neural network


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rule extraction from neural network algorithms have been investigated for two decades and there have been significant applications. Despite this level of success, rule extraction from neural network methods are generally not part of data mining tools, and a significant commercial breakthrough may still be some time away. This paper briefly reviews the state-of-the-art and points to some of the obstacles, namely a lack of evaluation techniques in experiments and larger benchmark data sets. A significant new development is the view that rule extraction from neural networks is an interactive process which actively involves the user. This leads to the application of assessment and evaluation techniques from information retrieval which may lead to a range of new methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper illustrates the damage identification and condition assessment of a three story bookshelf structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). A major obstacle of using measured frequency response function data is a large size input variables to ANNs. This problem is overcome by applying a data reduction technique called principal component analysis (PCA). In the proposed procedure, ANNs with their powerful pattern recognition and classification ability were used to extract damage information such as damage locations and severities from measured FRFs. Therefore, simple neural network models are developed, trained by Back Propagation (BP), to associate the FRFs with the damage or undamaged locations and severity of the damage of the structure. Finally, the effectiveness of the proposed method is illustrated and validated by using the real data provided by the Los Alamos National Laboratory, USA. The illustrated results show that the PCA based artificial Neural Network method is suitable and effective for damage identification and condition assessment of building structures. In addition, it is clearly demonstrated that the accuracy of proposed damage detection method can also be improved by increasing number of baseline datasets and number of principal components of the baseline dataset.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the relevant literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such assumption is easily violated in the more challenging face verification scenario, where an algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person. In this paper, we first discuss why previous attempts with SR might not be applicable to verification problems. We then propose an alternative approach to face verification via SR. Specifically, we propose to use explicit SR encoding on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which are then concatenated to form an overall face descriptor. Due to the deliberate loss spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment & various image deformations. Within the proposed framework, we evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN), and an implicit probabilistic technique based on Gaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the proposed local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, in both verification and closed-set identification problems. The experiments also show that l1-minimisation based encoding has a considerably higher computational than the other techniques, but leads to higher recognition rates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis investigated the viability of using Frequency Response Functions in combination with Artificial Neural Network technique in damage assessment of building structures. The proposed approach can help overcome some of limitations associated with previously developed vibration based methods and assist in delivering more accurate and robust damage identification results. Excellent results are obtained for damage identification of the case studies proving that the proposed approach has been developed successfully.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the past few decades, biodiesel produced from oilseed crops and animal fat is receiving much attention as a renewable and sustainable alternative for automobile engine fuels, and particularly petroleum diesel. However, current biodiesel production is heavily dependent on edible oil feedstocks which are unlikely to be sustainable in the longer term due to the rising food prices and the concerns about automobile engine durability. Therefore, there is an urgent need for researchers to identify and develop sustainable biodiesel feedstocks which overcome the disadvantages of current ones. On the other hand, artificial neural network (ANN) modeling has been successfully used in recent years to gain new knowledge in various disciplines. The main goal of this article is to review recent literatures and assess the state of the art on the use of ANN as a modeling tool for future generation biodiesel feedstocks. Biodiesel feedstocks, production processes, chemical compositions, standards, physio-chemical properties and in-use performance are discussed. Limitations of current biodiesel feedstocks over future generation biodiesel feedstock have been identified. The application of ANN in modeling key biodiesel quality parameters and combustion performance in automobile engines is also discussed. This review has determined that ANN modeling has a high potential to contribute to the development of renewable energy systems by accelerating biodiesel research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Time-expanded and heterodyned echolocation calls of the New Zealand long-tailed Chalinolobus tuberculatus and lesser short-tailed bat Mystacina tuberculata were recorded and digitally analysed. Temporal and spectral parameters were measured from time-expanded calls and power spectra generated for both time-expanded and heterodyned calls. Artificial neural networks were trained to classify the calls of both species using temporal and spectral parameters and power spectra as input data. Networks were then tested using data not previously seen. Calls could be unambiguously identified using parameters and power spectra from time-expanded calls. A neural network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 40 kHz (the frequency with the most energy of the fundamental of C. tuberculatus call), could identify 99% and 84% of calls of C. tuberculatus and M. tuberculata, respectively. A second network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 27 kHz (the frequency with the most energy of the fundamental of M. tuberculata call), could identify 34% and 100% of calls of C. tuberculatus and M. tuberculata, respectively. This study represents the first use of neural networks for the identification of bats from their echolocation calls. It is also the first study to use power spectra of time-expanded and heterodyned calls for identification of chiropteran species. The ability of neural networks to identify bats from their echolocation calls is discussed, as is the ecology of both species in relation to the design of their echolocation calls.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Feedforward inhibition deficits have been consistently demonstrated in a range of neuropsychiatric conditions using prepulse inhibition (PPI) of the acoustic startle eye-blink reflex when assessing sensorimotor gating. While PPI can be recorded in acutely decerebrated rats, behavioural, pharmacological and psychophysiological studies suggest the involvement of a complex neural network extending from brainstem nuclei to higher order cortical areas. The current functional magnetic resonance imaging study investigated the neural network underlying PPI and its association with electromyographically (EMG) recorded PPI of the acoustic startle eye-blink reflex in 16 healthy volunteers. A sparse imaging design was employed to model signal changes in blood oxygenation level-dependent (BOLD) responses to acoustic startle probes that were preceded by a prepulse at 120 ms or 480 ms stimulus onset asynchrony or without prepulse. Sensorimotor gating was EMG confirmed for the 120-ms prepulse condition, while startle responses in the 480-ms prepulse condition did not differ from startle alone. Multiple regression analysis of BOLD contrasts identified activation in pons, thalamus, caudate nuclei, left angular gyrus and bilaterally in anterior cingulate, associated with EMGrecorded sensorimotor gating. Planned contrasts confirmed increased pons activation for startle alone vs 120-ms prepulse condition, while increased anterior superior frontal gyrus activation was confirmed for the reverse contrast. Our findings are consistent with a primary pontine circuitry of sensorimotor gating that interconnects with inferior parietal, superior temporal, frontal and prefrontal cortices via thalamus and striatum. PPI processes in the prefrontal, frontal and superior temporal cortex were functionally distinct from sensorimotor gating.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present an overview of the QUT plant classification system submitted to LifeCLEF 2014. This system uses generic features extracted from a convolutional neural network previously used to perform general object classification. We examine the effectiveness of these features to perform plant classification when used in combination with an extremely randomised forest. Using this system, with minimal tuning, we obtained relatively good results with a score of 0:249 on the test set of LifeCLEF 2014.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Advances in neural network language models have demonstrated that these models can effectively learn representations of words meaning. In this paper, we explore a variation of neural language models that can learn on concepts taken from structured ontologies and extracted from free-text, rather than directly from terms in free-text. This model is employed for the task of measuring semantic similarity between medical concepts, a task that is central to a number of techniques in medical informatics and information retrieval. The model is built with two medical corpora (journal abstracts and patient records) and empirically validated on two ground-truth datasets of human-judged concept pairs assessed by medical professionals. Empirically, our approach correlates closely with expert human assessors ($\approx$ 0.9) and outperforms a number of state-of-the-art benchmarks for medical semantic similarity. The demonstrated superiority of this model for providing an effective semantic similarity measure is promising in that this may translate into effectiveness gains for techniques in medical information retrieval and medical informatics (e.g., query expansion and literature-based discovery).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The latest generation of Deep Convolutional Neural Networks (DCNN) have dramatically advanced challenging computer vision tasks, especially in object detection and object classification, achieving state-of-the-art performance in several computer vision tasks including text recognition, sign recognition, face recognition and scene understanding. The depth of these supervised networks has enabled learning deeper and hierarchical representation of features. In parallel, unsupervised deep learning such as Convolutional Deep Belief Network (CDBN) has also achieved state-of-the-art in many computer vision tasks. However, there is very limited research on jointly exploiting the strength of these two approaches. In this paper, we investigate the learning capability of both methods. We compare the output of individual layers and show that many learnt filters and outputs of the corresponding level layer are almost similar for both approaches. Stacking the DCNN on top of unsupervised layers or replacing layers in the DCNN with the corresponding learnt layers in the CDBN can improve the recognition/classification accuracy and training computational expense. We demonstrate the validity of the proposal on ImageNet dataset.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the field of face recognition, sparse representation (SR) has received considerable attention during the past few years, with a focus on holistic descriptors in closed-set identification applications. The underlying assumption in such SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such an assumption is easily violated in the face verification scenario, where the task is to determine if two faces (where one or both have not been seen before) belong to the same person. In this study, the authors propose an alternative approach to SR-based face verification, where SR encoding is performed on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which then form an overall face descriptor. Owing to the deliberate loss of spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment and various image deformations. Within the proposed framework, they evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN) and an implicit probabilistic technique based on Gaussian mixture models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, on both the traditional closed-set identification task and the more applicable face verification task. The experiments also show that l1-minimisation-based encoding has a considerably higher computational cost when compared with SANN-based and probabilistic encoding, but leads to higher recognition rates.