109 resultados para Primes number
Resumo:
Objective: To assess the relationship between Bayesian MUNE and histological motor neuron counts in wild-type mice and in an animal model of ALS. Methods: We performed Bayesian MUNE paired with histological counts of motor neurons in the lumbar spinal cord of wild-type mice and transgenic SOD1 G93A mice that show progressive weakness over time. We evaluated the number of acetylcholine endplates that were innervated by a presynaptic nerve. Results: In wild-type mice, the motor unit number in the gastrocnemius muscle estimated by Bayesian MUNE was approximately half the number of motor neurons in the region of the spinal cord that contains the cell bodies of the motor neurons supplying the hindlimb crural flexor muscles. In SOD1 G93A mice, motor neuron numbers declined over time. This was associated with motor endplate denervation at the end-stage of disease. Conclusion: The number of motor neurons in the spinal cord of wild-type mice is proportional to the number of motor units estimated by Bayesian MUNE. In SOD1 G93A mice, there is a lower number of estimated motor units compared to the number of spinal cord motor neurons at the end-stage of disease, and this is associated with disruption of the neuromuscular junction. Significance: Our finding that the Bayesian MUNE method gives estimates of motor unit numbers that are proportional to the numbers of motor neurons in the spinal cord supports the clinical use of Bayesian MUNE in monitoring motor unit loss in ALS patients. © 2012 International Federation of Clinical Neurophysiology.
Resumo:
Quantifying spatial and/or temporal trends in environmental modelling data requires that measurements be taken at multiple sites. The number of sites and duration of measurement at each site must be balanced against costs of equipment and availability of trained staff. The split panel design comprises short measurement campaigns at multiple locations and continuous monitoring at reference sites [2]. Here we present a modelling approach for a spatio-temporal model of ultrafine particle number concentration (PNC) recorded according to a split panel design. The model describes the temporal trends and background levels at each site. The data were measured as part of the “Ultrafine Particles from Transport Emissions and Child Health” (UPTECH) project which aims to link air quality measurements, child health outcomes and a questionnaire on the child’s history and demographics. The UPTECH project involves measuring aerosol and particle counts and local meteorology at each of 25 primary schools for two weeks and at three long term monitoring stations, and health outcomes for a cohort of students at each school [3].
Resumo:
Most studies of in vitro fertilisation (IVF) outcomes use cycle-based data and fail to account for women who use repeated IVF cycles. The objective of this study was to examine the association between the number of eggs collected (EC) and the percentage fertilised normally, and women’s self-reported medical, personal and social histories. This study involved a crosssectional survey of infertile women (aged 27-46 years) recruited from four privately-owned fertility clinics located in major cities of Australia. Regression modeling was used to estimate the mean EC and mean percentage of eggs fertilised normally: adjusted for age at EC. Appropriate statistical methods were used to take account of repeated IVF cycles by the same women. Among 121 participants who returned the survey and completed 286 IVF cycles, the mean age at EC was 35.2 years (SD 4.5). Women’s age at EC was strongly associated with the number of EC: <30 years, 11.7 EC; 30.0-< 35 years, 10.6 EC; 35.0-<40.0 years, 7.3 EC; 40.0+ years, 8.1 EC; p<.0001. Prolonged use of oral contraceptives was associated with lower numbers of EC: never used, 14.6 EC; 0-2 years, 11.7 EC; 3-5 years, 8.5 EC; 6þ years, 8.2 EC; p=.04. Polycystic ovary syndrome (PCOS) was associated with more EC: have PCOS, 11.5 EC; no, 8.3 EC; p=.01. Occupational exposures may be detrimental to normal fertilisation: professional roles, 58.8%; trade and service roles, 51.8%; manual and other roles, 63.3%; p=.02. In conclusion, women’s age remains the most significant characteristic associated with EC but not the percentage of eggs fertilised normally.
Resumo:
There is significant toxicological evidence of the effects of ultrafine particles (<100nm) on human health (WHO 2005). Studies show that the number concentration of particles has been associated with adverse human health effects (Englert 2004). This work is part of a major study called ‘Ultrafine Particles form Traffic Emissions and Children’s Health’ (UPTECH), which seeks to determine the effect of the exposure to traffic related ultrafine particles on children’s health in schools (http://www.ilaqh.qut.edu.au/Misc/UPT ECH%20Home.htm). Quantification of spatial variation of particle number concentration (PNC) in a microscale environment and identification of the main affecting parameters and their contribution levels are the main aims of this analysis.
Resumo:
Motor unit number estimation (MUNE) is a method which aims to provide a quantitative indicator of progression of diseases that lead to loss of motor units, such as motor neurone disease. However the development of a reliable, repeatable and fast real-time MUNE method has proved elusive hitherto. Ridall et al. (2007) implement a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm to produce a posterior distribution for the number of motor units using a Bayesian hierarchical model that takes into account biological information about motor unit activation. However we find that the approach can be unreliable for some datasets since it can suffer from poor cross-dimensional mixing. Here we focus on improved inference by marginalising over latent variables to create the likelihood. In particular we explore how this can improve the RJMCMC mixing and investigate alternative approaches that utilise the likelihood (e.g. DIC (Spiegelhalter et al., 2002)). For this model the marginalisation is over latent variables which, for a larger number of motor units, is an intractable summation over all combinations of a set of latent binary variables whose joint sample space increases exponentially with the number of motor units. We provide a tractable and accurate approximation for this quantity and also investigate simulation approaches incorporated into RJMCMC using results of Andrieu and Roberts (2009).
Resumo:
Deciding the appropriate population size and number of is- lands for distributed island-model genetic algorithms is often critical to the algorithm’s success. This paper outlines a method that automatically searches for good combinations of island population sizes and the number of islands. The method is based on a race between competing parameter sets, and collaborative seeding of new parameter sets. This method is applicable to any problem, and makes distributed genetic algorithms easier to use by reducing the number of user-set parameters. The experimental results show that the proposed method robustly and reliably finds population and islands settings that are comparable to those found with traditional trial-and-error approaches.
Resumo:
The use of Bayesian methodologies for solving optimal experimental design problems has increased. Many of these methods have been found to be computationally intensive for design problems that require a large number of design points. A simulation-based approach that can be used to solve optimal design problems in which one is interested in finding a large number of (near) optimal design points for a small number of design variables is presented. The approach involves the use of lower dimensional parameterisations that consist of a few design variables, which generate multiple design points. Using this approach, one simply has to search over a few design variables, rather than searching over a large number of optimal design points, thus providing substantial computational savings. The methodologies are demonstrated on four applications, including the selection of sampling times for pharmacokinetic and heat transfer studies, and involve nonlinear models. Several Bayesian design criteria are also compared and contrasted, as well as several different lower dimensional parameterisation schemes for generating the many design points.
Resumo:
Herein the mechanical properties of graphene, including Young’s modulus, fracture stress and fracture strain have been investigated by molecular dynamics simulations. The simulation results show that the mechanical properties of graphene are sensitive to the temperature changes but insensitive to the layer numbers in the multilayer graphene. Increasing temperature exerts adverse and significant effects on the mechanical properties of graphene. However, the adverse effect produced by the increasing layer number is marginal. On the other hand, isotope substitutions in graphene play a negligible role in modifying the mechanical properties of graphene.
Resumo:
A newly developed computational approach is proposed in the paper for the analysis of multiple crack problems based on the eigen crack opening displacement (COD) boundary integral equations. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix to determine all the unknown CODs step by step. To deal with the interactions among cracks for multiple crack problems, all cracks in the problem are divided into two groups, namely the adjacent group and the far-field group, according to the distance to the current crack in consideration. The adjacent group contains cracks with relatively small distances but strong effects to the current crack, while the others, the cracks of far-field group are composed of those with relatively large distances. Correspondingly, the eigen COD of the current crack is computed in two parts. The first part is computed by using the fictitious tractions of adjacent cracks via the local Eshelby matrix derived from the traction boundary integral equations in discretized form, while the second part is computed by using those of far-field cracks so that the high computational efficiency can be achieved in the proposed approach. The numerical results of the proposed approach are compared not only with those using the dual boundary integral equations (D-BIE) and the BIE with numerical Green's functions (NGF) but also with those of the analytical solutions in literature. The effectiveness and the efficiency of the proposed approach is verified. Numerical examples are provided for the stress intensity factors of cracks, up to several thousands in number, in both the finite and infinite plates.
Resumo:
It has not yet been established whether the spatial variation of particle number concentration (PNC) within a microscale environment can have an effect on exposure estimation results. In general, the degree of spatial variation within microscale environments remains unclear, since previous studies have only focused on spatial variation within macroscale environments. The aims of this study were to determine the spatial variation of PNC within microscale school environments, in order to assess the importance of the number of monitoring sites on exposure estimation. Furthermore, this paper aims to identify which parameters have the largest influence on spatial variation, as well as the relationship between those parameters and spatial variation. Air quality measurements were conducted for two consecutive weeks at each of the 25 schools across Brisbane, Australia. PNC was measured at three sites within the grounds of each school, along with the measurement of meteorological and several other air quality parameters. Traffic density was recorded for the busiest road adjacent to the school. Spatial variation at each school was quantified using coefficient of variation (CV). The portion of CV associated with instrument uncertainty was found to be 0.3 and therefore, CV was corrected so that only non-instrument uncertainty was analysed in the data. The median corrected CV (CVc) ranged from 0 to 0.35 across the schools, with 12 schools found to exhibit spatial variation. The study determined the number of required monitoring sites at schools with spatial variability and tested the deviation in exposure estimation arising from using only a single site. Nine schools required two measurement sites and three schools required three sites. Overall, the deviation in exposure estimation from using only one monitoring site was as much as one order of magnitude. The study also tested the association of spatial variation with wind speed/direction and traffic density, using partial correlation coefficients to identify sources of variation and non-parametric function estimation to quantify the level of variability. Traffic density and road to school wind direction were found to have a positive effect on CVc, and therefore, also on spatial variation. Wind speed was found to have a decreasing effect on spatial variation when it exceeded a threshold of 1.5 (m/s), while it had no effect below this threshold. Traffic density had a positive effect on spatial variation and its effect increased until it reached a density of 70 vehicles per five minutes, at which point its effect plateaued and did not increase further as a result of increasing traffic density.
Resumo:
This mathematics education research provides significant insights for the teaching of decimals to children. It is well known that decimals is one of the most difficult topics to learn and teach. Annette’s research is unique in that it focuses not only on the cognitive, but also on the affective and conative aspects of learning and teaching of decimals. The study is innovative as it includes the students as co-constructors and co-researchers. The findings open new ways of thinking for educators about how students cognitively process decimal knowledge, as well as how students might develop a sense of self as a learner, teacher and researcher in mathematics.
Resumo:
Multiple sclerosis (MS) is a common chronic inflammatory disease of the central nervous system. Susceptibility to the disease is affected by both environmental and genetic factors. Genetic factors include haplotypes in the histocompatibility complex (MHC) and over 50 non-MHC loci reported by genome-wide association studies. Amongst these, we previously reported polymorphisms in chromosome 12q13-14 with a protective effect in individuals of European descent. This locus spans 288 kb and contains 17 genes, including several candidate genes which have potentially significant pathogenic and therapeutic implications. In this study, we aimed to fine-map this locus. We have implemented a two-phase study: a variant discovery phase where we have used next-generation sequencing and two target-enrichment strategies [long-range polymerase chain reaction (PCR) and Nimblegen's solution phase hybridization capture] in pools of 25 samples; and a genotyping phase where we genotyped 712 variants in 3577 healthy controls and 3269 MS patients. This study confirmed the association (rs2069502, P = 9.9 × 10−11, OR = 0.787) and narrowed down the locus of association to an 86.5 kb region. Although the study was unable to pinpoint the key-associated variant, we have identified a 42 (genotyped and imputed) single-nucleotide polymorphism haplotype block likely to harbour the causal variant. No evidence of association at previously reported low-frequency variants in CYP27B1 was observed. As part of the study we compared variant discovery performance using two target-enrichment strategies. We concluded that our pools enriched with Nimblegen's solution phase hybridization capture had better sensitivity to detect true variants than the pools enriched with long-range PCR, whilst specificity was better in the long-range PCR-enriched pools compared with solution phase hybridization capture enriched pools; this result has important implications for the design of future fine-mapping studies.
Resumo:
This thesis developed semi-parametric regression models for estimating the spatio-temporal distribution of outdoor airborne ultrafine particle number concentration (PNC). The models developed incorporate multivariate penalised splines and random walks and autoregressive errors in order to estimate non-linear functions of space, time and other covariates. The models were applied to data from the "Ultrafine Particles from Traffic Emissions and Child" project in Brisbane, Australia, and to longitudinal measurements of air quality in Helsinki, Finland. The spline and random walk aspects of the models reveal how the daily trend in PNC changes over the year in Helsinki and the similarities and differences in the daily and weekly trends across multiple primary schools in Brisbane. Midday peaks in PNC in Brisbane locations are attributed to new particle formation events at the Port of Brisbane and Brisbane Airport.
Resumo:
Individual variability in the acquisition, consolidation and extinction of conditioned fear potentially contributes to the development of fear pathology including posttraumatic stress disorder (PTSD). Pavlovian fear conditioning is a key tool for the study of fundamental aspects of fear learning. Here, we used a selected mouse line of High and Low Pavlovian conditioned fear created from an advanced intercrossed line (AIL) in order to begin to identify the cellular basis of phenotypic divergence in Pavlovian fear conditioning. We investigated whether phosphorylated MAPK (p44/42 ERK/MAPK), a protein kinase required in the amygdala for the acquisition and consolidation of Pavlovian fear memory, is differentially expressed following Pavlovian fear learning in the High and Low fear lines. We found that following Pavlovian auditory fear conditioning, High and Low line mice differ in the number of pMAPK-expressing neurons in the dorsal sub nucleus of the lateral amygdala (LAd). In contrast, this difference was not detected in the ventral medial (LAvm) or ventral lateral (LAvl) amygdala sub nuclei or in control animals. We propose that this apparent increase in plasticity at a known locus of fear memory acquisition and consolidation relates to intrinsic differences between the two fear phenotypes. These data provide important insights into the micronetwork mechanisms encoding phenotypic differences in fear. Understanding the circuit level cellular and molecular mechanisms that underlie individual variability in fear learning is critical for the development of effective treatment of fear-related illnesses such as PTSD.
Resumo:
The increasing growth in the use of Hardware Security Modules (HSMs) towards identification and authentication of a security endpoint have raised numerous privacy and security concerns. HSMs have the ability to tie a system or an object, along with its users to the physical world. However, this enables tracking of the user and/or an object associated with the HSM. Current systems do not adequately address the privacy needs and as such are susceptible to various attacks. In this work, we analyse various security and privacy concerns that arise when deploying such hardware security modules and propose a system that allow users to create pseudonyms from a trusted master public-secret key pair. The proposed system is based on the intractability of factoring and finding square roots of a quadratic residue modulo a composite number, where the composite number is a product of two large primes. Along with the standard notion of protecting privacy of an user, the proposed system offers colligation between seemingly independent pseudonyms. This new property when combined with HSMs that store the master secret key is extremely beneficial to a user, as it offers a convenient way to generate a large number of pseudonyms using relatively small storage requirements.