223 resultados para Plant Decomposition
Resumo:
The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. The thermal decomposition of hydrotalcites with hexacyanoferrite(II) and hexacyanoferrate(III) in the interlayer has been studied using controlled rate thermal analysis technology. X-ray diffraction shows the hydrotalcites studied have a d(003) spacing of 11.1 and 10.9 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. Calculations based upon CRTA measurements show that 7 moles of water is lost, proving the formula of hexacyanoferrite(II) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.5 .7 H2O and for the hexacyanoferrate(III) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.66 * 9 H2O. Dehydroxylation combined with CN unit loss occurs in three steps between a) 310 and 367°C b) 367 and 390°C and c) between 390 and 428°C for both the hexacyanoferrite(II) and hexacyanoferrate(III) intercalated hydrotalcite.
Resumo:
Thermogravimetry combined with evolved gas mass spectrometry has been used to ascertain the stability of the ‘cave’ mineral brushite. X-ray diffraction shows that brushite from the Jenolan Caves is very pure. Thermogravimetric analysis coupled with ion current mass spectrometry shows a mass loss at 111°C due to loss of water of hydration. A further decomposition step occurs at 190°C with the conversion of hydrogen phosphate to a mixture of calcium ortho-phosphate and calcium pyrophosphate. TG-DTG shows the mineral is not stable above 111°C. A mechanism for the formation of brushite on calcite surfaces is proposed, and this mechanism has relevance to the formation of brushite in urinary tracts.
Resumo:
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.