79 resultados para Piezoelectric force microscopy
Resumo:
The exchange of physical forces in both cell-cell and cell-matrix interactions play a significant role in a variety of physiological and pathological processes, such as cell migration, cancer metastasis, inflammation and wound healing. Therefore, great interest exists in accurately quantifying the forces that cells exert on their substrate during migration. Traction Force Microscopy (TFM) is the most widely used method for measuring cell traction forces. Several mathematical techniques have been developed to estimate forces from TFM experiments. However, certain simplifications are commonly assumed, such as linear elasticity of the materials and/or free geometries, which in some cases may lead to inaccurate results. Here, cellular forces are numerically estimated by solving a minimization problem that combines multiple non-linear FEM solutions. Our simulations, free from constraints on the geometrical and the mechanical conditions, show that forces are predicted with higher accuracy than when using the standard approaches.
Resumo:
Much interest surrounds the effect of extracellular matrix (ECM) elasticity on cell behavior. Here we present a rapid method for measuring the elasticity of synthetic ECM substrates based on indentation of the substrate with a ferromagnetic sphere and optical tracking of the resulting deformation. We find that this method yields order-of-magnitude agreement with atomic force microscopy elasticity measurements, but that the degree of this agreement depends strongly on sphere density and gel elasticity. In its regime of greatest accuracy, we envision that this method may be used for high-throughput characterization of ECM substrates in cell biological studies.
Resumo:
Based on the characterization by Atomic Force Microscopy (AFM), we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young’s moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton (CSK) and the intracellular fluid when the fixed chondrocytes is mainly governed by their intracellular fluid which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic (PHE) constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.
Resumo:
Lanthanum oxide (La2O3) nanostructured films are synthesized on a p-type silicon wafer by ablation of La2O3 pellet due to interaction with hot dense argon plasmas in a modified dense plasma focus (DPF) device. The nanostructured films are investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) spectra. SEM study shows the formation of nano-films having nano-size structures with the average nanostructures size ~25, ~53, and ~45 nm for one, two, and three DPF shots, respectively. The nanostructures sizes and morphology of nano-films are consistent between the AFM and SEM analyses. XRD spectra confirms nano-sized La2O3 with an average grain size ~34, ~51, and ~42 nm for one, two, and three DPF shots, respectively. The electrical properties such as current-voltage and capacitance-voltage (C-V) characteristics of the Al-La2O3-Si metal-oxide- semiconductor (MOS) capacitor structure are measured. The current conduction mechanism of the MOS capacitors is also demonstrated. The C-V characteristics are further used to obtain the electrical parameters such as the dielectric constant, oxide thickness, flat-band capacitance, and flat-band voltage of the MOS capacitors. These measurements demonstrate significantly lower leakage currents without any commonly used annealing or doping, thereby revealing a significant improvement of the MOS nanoelectronic device performance due to the incorporation of the DPF-produced La2O3 nano-films.
Resumo:
Effective control of dense, high-quality carbon nanotube arrays using hierarchical multilayer catalyst patterns is demonstrated. Scanning/transmission electron microscopy, atomic force microscopy, Raman spectroscopy, and numerical simulations show that by changing the secondary and tertiary layers one can control the properties of the nanotube arrays. The arrays with the highest surface density of vertically aligned nanotubes are produced using a hierarchical stack of iron nanoparticles and alumina and silica layers differing in thickness by one order of magnitude from one another. The results are explained in terms of the catalyst structure effect on carbon diffusivity.
Resumo:
Luminescent ZnO nanoparticles have been synthesized on silicon and quartz substrates under extremely non-equilibrium conditions of energetic ion condensation during the post-focus phase in a dense plasma focus (DPF) device. Ar+, O+, Zn+ and ZnO+ ions are generated as a result of interaction of hot and dense argon plasma focus with the surfaces of ZnO pellets placed at the anode. It is found that the sizes, structural and photoluminescence (PL) properties of the ZnO nanoparticles appear to be quite different on Si(1 0 0) and quartz substrates. The results of x-ray diffractometry and atomic force microscopy show that the ZnO nanoparticles are crystalline and range in size from 5-7 nm on Si(1 0 0) substrates to 10-38 nm on quartz substrates. Room-temperature PL studies reveal strong peaks related to excitonic bands and defects for the ZnO nanoparticles deposited on Si (1 0 0), whereas the excitonic bands are not excited in the quartz substrate case. Raman studies indicate the presence of E2 (high) mode for ZnO nanoparticles deposited on Si(1 0 0).
Resumo:
Results of experimental investigations on the relationship between nanoscale morphology of carbon doped hydrogenated silicon-oxide (SiOCH) low-k films and their electron spectrum of defect states are presented. The SiOCH films have been deposited using trimethylsilane (3MS) - oxygen mixture in a 13.56 MHz plasma enhanced chemical vapor deposition (PECVD) system at variable RF power densities (from 1.3 to 2.6 W/cm2) and gas pressures of 3, 4, and 5 Torr. The atomic structure of the SiOCH films is a mixture of amorphous-nanocrystalline SiO2-like and SiC-like phases. Results of the FTIR spectroscopy and atomic force microscopy suggest that the volume fraction of the SiC-like phase increases from ∼0.2 to 0.4 with RF power. The average size of the nanoscale surface morphology elements of the SiO2-like matrix can be controlled by the RF power density and source gas flow rates. Electron density of the defect states N(E) of the SiOCH films has been investigated with the DLTS technique in the energy range up to 0.6 eV from the bottom of the conduction band. Distinct N(E) peaks at 0.25 - 0.35 eV and 0.42 - 0.52 eV below the conduction band bottom have been observed. The first N(E) peak is identified as originated from E1-like centers in the SiC-like phase. The volume density of the defects can vary from 1011 - 1017 cm-3 depending on specific conditions of the PECVD process.
Resumo:
The aim of this study is to investigate the stress relaxation behavior of single chondrocytes using the Porohyperelastic (PHE) model and inverse Finite Element Analysis (FEA). Firstly, based on Atomic Force Microscopy (AFM) technique, we have found that the chondrocytes exhibited stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. Next, we have applied the inverse FEA technique to determine necessary material parameters for PHE model to simulate this stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that this PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.
Resumo:
In this work, diketopyrrolopyrrole-based polymer bulk heterojunction solar cells with inverted and regular architecture have been investigated. The influence of the polymer:fullerene ratio on the photoactive film nanomorphology has been studied in detail. Transmission Electron Microscopy and Atomic Force Microscopy reveal that the resulting film morphology strongly depends on the fullerene ratio. This fact determines the photocurrent generation and governs the transport of free charge carriers. Slight variations on the PCBM ratio respect to the polymer show great differences on the electrical behavior of the solar cell. Once the polymer:fullerene ratio is accurately adjusted, power conversion efficiencies of 4.7% and 4.9% are obtained for inverted and regular architectures respectively. Furthermore, by correlating the optical and morphological characterization of the polymer:fullerene films and the electrical behavior of solar cells, an ad hoc interpretation is proposed to explain the photovoltaic performance as a function of this polymer:blend composition.
Resumo:
A fluorenone based alternating copolymer (PFN-DPPF) with a furan based fused aromatic moiety has been designed and synthesized. PFN-DPPF exhibits a small band gap with a lower HOMO value. Testing this polymer semiconductor as the active layer in organic thin-film transistors results in hole mobilities as high as 0.15 cm2 V-1 s-1 in air.
Resumo:
A new, solution-processable, low-bandgap, diketopyrrolopyrrole- benzothiadiazole-based, donor-acceptor polymer semiconductor (PDPP-TBT) is reported. This polymer exhibits ambipolar charge transport when used as a single component active semiconductor in OTFTs with balanced hole and electron mobilities of 0.35 cm2 V-1s-1 and 0.40 cm 2 V-1s-1, respectively. This polymer has the potential for ambipolar transistor-based complementary circuits in printed electronics.
Resumo:
4-Hexylbithienopyridine has been prepared as a novel electron-accepting monomer for conjugated polymers. To test its electronic properties, alternating copolymers with fluorene and indenofluorene polymers have been prepared. The copolymers displayed reduction potentials about 0.5 V lower than for the corresponding fluorene and indenofluorene homopolymers, indicating much improved electron-accepting properties. Analysis of the microscopic morphology of thin films of the copolymers by AFM shows that they lack the extensive supramolecular order seen with the homopolymers, which is attributed to the bithienopyridine units disrupting the π-stacking. LEDs using these polymers as the emitting layer produce blue-green emission with low turn-on voltages with aluminum electrodes confirming their improved electron affinity. The indenofluorene copolymer displayed an irreversible red shift in emission at high voltages, which is attributed to oxidation of the indenofluorene units. This red shift occurred at higher potentials than for indenofluorene homopolymers in LEDs, suggesting that the heterocyclic moieties offer some protection against electrically promoted oxidation.
Resumo:
Two conjugated oligomers, representing elementary segments of fluorene-thiophene copolymers, are compared in terms of the microscopic morphology and the optical properties of thin deposits. The atomic force microscopy morphological data and the solid-state absorption and emission spectra are interpreted in terms of the assembly of the conjugated molecules. The compound with a terthiophene central unit and fluorene end-groups shows well-defined monolayer-by-monolayer assembly into micrometer-long stripe-like structures, with a crystalline herringbone-type organization within the monolayers. Polarized confocal microscopy indicates a strong orientation of the crystalline domains within the stripes. In contrast, the compound with a terfluorene central unit and thiophene end groups forms no textured aggregates and the optical spectra in the solid-state are very similar to those recorded in solution, suggesting that the molecules interact only weakly in the solid. The difference in behaviour between the two compounds most probably originates from their different capability to form densely-packed assemblies of interacting π-systems.
Resumo:
A series of conjugated copolymers containing fluorene or indenofluorene units alternating with oligothiophene segments, with potential interest for use as the active layer in field-effect transistors, is investigated. Atomic force microscopy analysis of the morphology of thin deposits shows either the formation of fibrillar structures, which are the signature of long-range π stacking, or the presence of untextured aggregates, resulting from disordered assembly. These morphologies are interpreted in terms of the supramolecular organization of the conjugated chains. Molecular modeling simulations indicate that the commensurability between the lengths of the monomer units and the presence of alkyl side groups are the two key structural factors governing the chain organization into highly ordered assemblies. The most favorable structures are those combining fluorene (indenofluorene) units with unsubstituted bithiophene (terthiophene) segments.
Resumo:
Organic photovoltaic devices with either bulk heterojunction (BHJ) or nanoparticulate (NP) active layers have been prepared from a 1:2 blend of (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene}) (PDPP-TNT) and the fullerene acceptor, ([6,6]-phenyl C71-butyric acid methyl ester) (PC70BM). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) have been used to investigate the morphology of the active layers of the two approaches. Mild thermal treatment of the NP film is required to promote initial joining of the NPs in order for the devices to function, however the NP structure is retained. Consequently, whereas gross phase segregation of the active layer occurs in the BHJ device spin cast from chloroform, the nanoparticulate approach retains control of the material domain sizes on the length scale of exciton diffusion in the materials. As a result, NP devices are found to generate more than twice the current density of BHJ devices and have a substantially greater overall efficiency. The use of aqueous nanoparticulate dispersions offers a promising approach to control the donor acceptor morphology on the nanoscale with the benefit of environmentally- friendly, solution-based fabrication. © 2014 the Owner Societies.