282 resultados para Phase melting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multilevel converters are used in high power and high voltage applications due to their attractive benefits in generating high quality output voltage. Increasing the number of voltage levels can lead to a reduction in lower order harmonics. Various modulation and control techniques are introduced for multilevel converters like Space Vector Modulation (SVM), Sinusoidal Pulse Width Modulation (SPWM) and Harmonic Elimination (HE) methods. Multilevel converters may have a DC link with equal or unequal DC voltages. In this paper a new modulation technique based on harmonic elimination method is proposed for those multilevel converters that have unequal DC link voltages. This new technique has better effect on output voltage quality and less Total Harmonic Distortion (THD) than other modulation techniques. In order to verify the proposed modulation technique, MATLAB simulations are carried out for a single-phase diode-clamped inverter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Raman spectrum of bukovskýite, Fe3+2(OH)(SO4)(AsO4)•7H2O has been studied and compared with the Raman spectrum of an amorphous gel containing specifically Fe, As and S elements and is understood as an intermediate product in the formation of bukovskýite. Observed bands are assigned to the stretching and bending vibrations of (SO4)2- and (AsO4)3- units, stretching and bending vibrations and librational modes of hydrogen bonded water molecules, stretching and bending vibrations of hydrogen bonded (OH)- ions and Fe3+-(O,OH) units. Approximate range of O-H...O hydrogen bond lengths is inferred from the Raman spectra. Raman spectra of crystalline bukovskýite and of the amorphous gel differ in that the bukovskýite spectrum is more complex, observed bands are sharp, the degenerate bands of (SO4)2- and (AsO4)3- are split and more intense. Lower wavenumbers of  H2O bending vibration in the spectrum of the amorphous gel may indicate the presence of weaker hydrogen bonds compared with those in bukovskýite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaffolds with open-pore morphologies offer several advantages in cell-based tissue engineering, but their use is limited by a low cell seeding efficiency. We hypothesized that inclusion of a collagen network as filling material within the open-pore architecture of polycaprolactone-tricalcium phosphate (PCL-TCP) scaffolds increases human bone marrow stromal cells (hBMSC) seeding efficiency under perfusion and in vivo osteogenic capacity of the resulting constructs. PCL-TCP scaffolds, rapid prototyped with a honeycomb-like architecture, were filled with a collagen gel and subsequently lyophilized, with or without final crosslinking. Collagen-free scaffolds were used as controls. The seeding efficiency was assessed after overnight perfusion of expanded hBMSC directly through the scaffold pores using a bioreactor system. By seeding and culturing freshly harvested hBMSC under perfusion for 3 weeks, the osteogenic capacity of generated constructs was tested by ectopic implantation in nude mice. The presence of the collagen network, independently of the crosslinking process, significantly increased the cell seeding efficiency (2.5-fold), and reduced the loss of clonogenic cells in the supernatant. Although no implant generated frank bone tissue, possibly due to the mineral distribution within the scaffold polymer phase, the presence of a non crosslinked collagen phase led to in vivo formation of scattered structures of dense osteoids. Our findings verify that the inclusion of a collagen network within open morphology porous scaffolds improves cell retention under perfusion seeding. In the context of cell-based therapies, collagen-filled porous scaffolds are expected to yield superior cell utilization, and could be combined with perfusion-based bioreactor devices to streamline graft manufacture.