151 resultados para Partial least squares
Resumo:
Determining the properties and integrity of subchondral bone in the developmental stages of osteoarthritis, especially in a form that can facilitate real-time characterization for diagnostic and decision-making purposes, is still a matter for research and development. This paper presents relationships between near infrared absorption spectra and properties of subchondral bone obtained from 3 models of osteoarthritic degeneration induced in laboratory rats via: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACL); and (iii) intra-articular injection of mono-ido-acetate (1 mg) (MIA), in the right knee joint, with 12 rats per model group (N = 36). After 8 weeks, the animals were sacrificed and knee joints were collected. A custom-made diffuse reflectance NIR probe of diameter 5 mm was placed on the tibial surface and spectral data were acquired from each specimen in the wavenumber range 4000–12 500 cm− 1. After spectral acquisition, micro computed tomography (micro-CT) was performed on the samples and subchondral bone parameters namely: bone volume (BV) and bone mineral density (BMD) were extracted from the micro-CT data. Statistical correlation was then conducted between these parameters and regions of the near infrared spectra using multivariate techniques including principal component analysis (PCA), discriminant analysis (DA), and partial least squares (PLS) regression. Statistically significant linear correlations were found between the near infrared absorption spectra and subchondral bone BMD (R2 = 98.84%) and BV (R2 = 97.87%). In conclusion, near infrared spectroscopic probing can be used to detect, qualify and quantify changes in the composition of the subchondral bone, and could potentially assist in distinguishing healthy from OA bone as demonstrated with our laboratory rat models.
Resumo:
In Australia and increasingly worldwide, methamphetamine is one of the most commonly seized drugs analysed by forensic chemists. The current well-established GC/MS methods used to identify and quantify methamphetamine are lengthy, expensive processes, but often rapid analysis is requested by undercover police leading to an interest in developing this new analytical technique. Ninety six illicit drug seizures containing methamphetamine (0.1% - 78.6%) were analysed using Fourier Transform Infrared Spectroscopy with an Attenuated Total Reflectance attachment and Chemometrics. Two Partial Least Squares models were developed, one using the principal Infrared Spectroscopy peaks of methamphetamine and the other a Hierarchical Partial Least Squares model. Both of these models were refined to choose the variables that were most closely associated with the methamphetamine % vector. Both of the models were excellent, with the principal peaks in the Partial Least Squares model having Root Mean Square Error of Prediction 3.8, R2 0.9779 and lower limit of quantification 7% methamphetamine. The Hierarchical Partial Least Squares model had lower limit of quantification 0.3% methamphetamine, Root Mean Square Error of Prediction 5.2 and R2 0.9637. Such models offer rapid and effective methods for screening illicit drug samples to determine the percentage of methamphetamine they contain.
Resumo:
This paper reports on a conceptual model of a larger research effort proceeding from a central interest in the importance of assessing the IS-Support provided to key-user groups. This study conceptualised a new multidimensional IS-Support construct with four dimensions: training, documentation, assistance and authorisation, which form the overarching construct – IS-Support. We argue that a holistic measure for assessing IS-Support should consist of dimensions, and measures, that together assess the variety of the support provided to IS key-user groups. The proposed IS-Support construct is defined as the support the IS key-user groups receive to increase their capabilities in utilising information systems within the organisation. With two interrelated phases, conceptualisation phase and validation phase, to rigorously hypothesise and validate a measurement model, the IS-Support model, proposed in this study, is intended to include the characteristics of analytic theory.
Resumo:
Purpose The neuromuscular mechanisms determining the mechanical behaviour of the knee during landing impact remain poorly understood. It was hypothesised that neuromuscular preparation is subject-specific and ranges along a continuum from passive to active. Methods A group of healthy men (N = 12) stepped-down from a knee-high platform for 60 consecutive trials. Surface EMG of the quadriceps and hamstrings was used to determine pre-impact onset timing, activation amplitude and cocontraction for each trial. Partial least squares regression was used to associate pre-impact preparation with post-impact knee stiffness and coordination. Results The group analysis revealed few significant changes in pre-impact preparation across trial blocks. Single-subject analyses revealed changes in muscle activity that varied in size and direction between individuals. Further, the association between pre-impact preparation and post-impact knee mechanics was subject-specific and ranged along a continuum of strategies. Conclusion The findings suggest that neuromuscular preparation during step landing is subject-specific and its association to post-impact knee mechanics occurs along a continuum, ranging from passive to active control strategies. Further work should examine the implications of these strategies on the distribution of knee forces in-vivo.
Resumo:
Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality in industrialized societies. The lack of metabolite biomarkers has impeded the clinical diagnosis of atherosclerosis so far. In this study, stable atherosclerosis patients (n=16) and age- and sex-matched non-atherosclerosis healthy subjects (n=28) were recruited from the local community (Harbin, P. R. China). The plasma was collected from each study subject and was subjected to metabolomics analysis by GC/MS. Pattern recognition analyses (principal components analysis, orthogonal partial least-squares discriminate analysis, and hierarchical clustering analysis) commonly demonstrated plasma metabolome, which was significantly different from atherosclerotic and non-atherosclerotic subjects. The development of atherosclerosis-induced metabolic perturbations of fatty acids, such as palmitate, stearate, and 1-monolinoleoylglycerol, was confirmed consistent with previous publication, showing that palmitate significantly contributes to atherosclerosis development via targeting apoptosis and inflammation pathways. Altogether, this study demonstrated that the development of atherosclerosis directly perturbed fatty acid metabolism, especially that of palmitate, which was confirmed as a phenotypic biomarker for clinical diagnosis of atherosclerosis.
Resumo:
Poor health and injury represent major obstacles to the future economic security of Australia. The national economic cost of work-related injury is estimated at $57.5 billion p/a. Since exposure to high physical demands is a major risk factor for musculoskeletal injury, monitoring and managing such physical activity levels in workers is a potentially important injury prevention strategy. Current injury monitoring practices are inadequate for the provision of clinically valuable information about the tissue specific responses to physical exertion. Injury of various soft tissue structures can manifest over time through accumulation of micro-trauma. Such micro-trauma has a propensity to increase the risk of acute injuries to soft-tissue structures such as muscle or tendon. As such, the capacity to monitor biomarkers that result from the disruption of these tissues offers a means of assisting the pre-emptive management of subclinical injury prior to acute failure or for evaluation of recovery processes. Here we have adopted an in-vivo exercise induced muscle damage model allowing the application of laboratory controlled conditions to assist in uncovering biochemical indicators associated with soft-tissue trauma and recovery. Importantly, urine was utilised as the diagnostic medium since it is non-invasive to collect, more acceptable to workers and less costly to employers. Moreover, it is our hypothesis that exercise induced tissue degradation products enter the circulation and are subsequently filtered by the kidney and pass through to the urine. To test this hypothesis a range of metabolomic and proteomic discovery-phase techniques were used, along with targeted approaches. Several small molecules relating to tissue damage were identified along with a series of skeletal muscle-specific protein fragments resulting from exercise induced soft-tissue damage. Each of the potential biomolecular markers appeared to be temporally present within urine. Moreover, the regulation of abundance seemed to be associated with functional recovery following the injury. This discovery may have important clinical applications for monitoring of a variety of inflammatory myopathies as well as novel applications in monitoring of the musculoskeletal health status of workers, professional athletes and/or military personnel to reduce the onset of potentially debilitating musculoskeletal injuries within these professions.
Resumo:
Aim To examine the mediating effect of coping strategies on the consequences of nursing and non-nursing (administrative) stressors on the job satisfaction of nurses during change management. Background Organisational change can result in an increase in nursing and nonnursing- related stressors, which can have a negative impact on the job satisfaction of nurses employed in health-care organisations. Method Matched data were collected in 2009 via an online survey at two timepoints (six months apart). Results Partial least squares path analysis revealed a significant causal relationship between Time 1 administrative and role stressors and an increase in nursing-specific stressors in Time 2. A significant relationship was also identified between job-specific nursing stressors and the adoption of effective coping strategies to deal with increased levels of change-induced stress and strain and the likelihood of reporting higher levels of job satisfaction in Time 2. Conclusions The effectiveness of coping strategies is critical in helping nurses to deal with the negative consequences of organisational change. Implications for nursing management This study shows that there is a causal relationship between change, non-nursing stressors and job satisfaction. Senior management should implement strategies aimed at reducing nursing and nonnursing stress during change in order to enhance the job satisfaction of nurses. Keywords: Australia, change management, job satisfaction, nursing and non-nursing stressors, public and non-profit sector
Application of near infrared (NIR) spectroscopy for determining the thickness of articular cartilage
Resumo:
The determination of the characteristics of articular cartilage such as thickness, stiffness and swelling, especially in the form that can facilitate real-time decisions and diagnostics is still a matter for research and development. This paper correlates near infrared spectroscopy with mechanically measured cartilage thickness to establish a fast, non-destructive, repeatable and precise protocol for determining this tissue property. Statistical correlation was conducted between the thickness of bovine cartilage specimens (n = 97) and regions of their near infrared spectra. Nine regions were established along the full absorption spectrum of each sample and were correlated with the thickness using partial least squares (PLS) regression multivariate analysis. The coefficient of determination (R2) varied between 53 and 93%, with the most predictive region (R2 = 93.1%, p < 0.0001) for cartilage thickness lying in the region (wavenumber) 5350–8850 cm−1. Our results demonstrate that the thickness of articular cartilage can be measured spectroscopically using NIR light. This protocol is potentially beneficial to clinical practice and surgical procedures in the treatment of joint disease such as osteoarthritis.
Resumo:
This thesis investigates the use of near infrared (NIR) spectroscopic methods for rapid measurement of nutrient elements in mill mud and mill ash. Adoption of NIR-based analyses for carbon, nitrogen, phosphorus, potassium and silicon will allow Australian sugarcane farmers to comply with recent legislative changes, and act within recommended precision farming frameworks. For these analyses, NIR spectroscopic methods surpass several facets of traditional wet chemistry techniques, dramatically reducing costs, required expertise and chemical exposure, while increasing throughput and access to data. Further, this technology can be applied in various modes, including laboratory, at-line and on-line installations, allowing targeted measurement.
Resumo:
Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub-cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome-wide localisation in scenarios wherein perturbation may prompt dynamic re-distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub-cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single-gradient data, we observe significant improvement in protein-organelle association via both a non-linear support vector machine algorithm and partial least-squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub-cellular organelles.
Resumo:
Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of Chinese hawthorn (Crataegus pinnatifida Bge. var. major) fruit from three geographical regions as well as for the estimation of the total sugar, total acid, total phenolic content, and total antioxidant activity. Principal component analysis (PCA) was used for the discrimination of the fruit on the basis of their geographical origin. Three pattern recognition methods, linear discriminant analysis, partial least-squares-discriminant analysis, and back-propagation artificial neural networks, were applied to classify and compare these samples. Furthermore, three multivariate calibration models based on the first derivative NIR spectroscopy, partial least-squares regression, back-propagation artificial neural networks, and least-squares-support vector machines, were constructed for quantitative analysis of the four analytes, total sugar, total acid, total phenolic content, and total antioxidant activity, and validated by prediction data sets.
Context-specific stressors, work-related social support and work-family conflict : a mediation study
Resumo:
Understanding the antecedents of work-family conflict is important as it allows organisations to effectively engage in work design for professional employees. This study examines the impact of sources of social support as antecedents of work-family conflict. The hypotheses were tests using Partial Least Squares modelling on a sample of 366 professional employees. The path model showed that context-specific stressors impacted positively on job demand, which led to higher levels of work-family conflict. Contrary to our expectation, non-work related social support did not have any statistical relationship with job demand and work-family conflict. In addition, individuals experiencing high job demands were found to obtain more social support from both work and non-work-related sources. Individuals with more work-related social support were less likely to have less work-family conflict. Surprisingly, non-work social support sources had no statistically significant relationship with work-family conflict.
Resumo:
Person re-identification is particularly challenging due to significant appearance changes across separate camera views. In order to re-identify people, a representative human signature should effectively handle differences in illumination, pose and camera parameters. While general appearance-based methods are modelled in Euclidean spaces, it has been argued that some applications in image and video analysis are better modelled via non-Euclidean manifold geometry. To this end, recent approaches represent images as covariance matrices, and interpret such matrices as points on Riemannian manifolds. As direct classification on such manifolds can be difficult, in this paper we propose to represent each manifold point as a vector of similarities to class representers, via a recently introduced form of Bregman matrix divergence known as the Stein divergence. This is followed by using a discriminative mapping of similarity vectors for final classification. The use of similarity vectors is in contrast to the traditional approach of embedding manifolds into tangent spaces, which can suffer from representing the manifold structure inaccurately. Comparative evaluations on benchmark ETHZ and iLIDS datasets for the person re-identification task show that the proposed approach obtains better performance than recent techniques such as Histogram Plus Epitome, Partial Least Squares, and Symmetry-Driven Accumulation of Local Features.
Resumo:
The thesis investigates “where were the auditors in asset securitizations”, a criticism of the audit profession before and after the onset of the global financial crisis (GFC). Asset securitizations increase audit complexity and audit risks, which are expected to increase audit fees. Using US bank holding company data from 2003 to 2009, this study examines the association between asset securitization risks and audit fees, and its changes during the global financial crisis. The main test is based on an ordinary least squares (OLS) model, which is adapted from the Fields et al. (2004) bank audit fee model. I employ a principal components analysis to address high correlations among asset securitization risks. Individual securitization risks are also separately tested. A suite of sensitivity tests indicate the results are robust. These include model alterations, sample variations, further controls in the tests, and correcting for the securitizer self-selection problem. A partial least squares (PLS) path modelling methodology is introduced as a separate test, which allows for high intercorrelations, self-selection correction, and sequential order hypotheses in one simultaneous model. The PLS results are consistent with the main results. The study finds significant and positive associations between securitization risks and audit fees. After the commencement of the global financial crisis in 2007, there was an increased focus on the role of audits on asset securitization risks resulting from bank failures; therefore I expect that auditors would become more sensitive to bank asset securitization risks after the commencement of the crisis. I find that auditors appear to focus on different aspects of asset securitization risks during the crisis and that auditors appear to charge a GFC premium for banks. Overall, the results support the view that auditors consider asset securitization risks and market changes, and adjust their audit effort and risk considerations accordingly.
Aligning off-balance sheet risk, on-balance sheet risk and audit fees: a PLS path modelling analysis
Resumo:
This study focuses on using the partial least squares (PLS) path modelling technique in archival auditing research by replicating the data and research questions from prior bank audit fee studies. PLS path modelling allows for inter-correlations among audit fee determinants by establishing latent constructs and multiple relationship paths in one simultaneous PLS path model. Endogeneity concerns about auditor choice can also be addressed with PLS path modelling. With a sample of US bank holding companies for the period 2003-2009, we examine the associations among on-balance sheet financial risks, off-balance sheet risks and audit fees, and also address the pervasive client size effect, and the effect of the self-selection of auditors. The results endorse the dominating effect of size on audit fees, both directly and indirectly via its impacts on other audit fee determinants. By simultaneously considering the self-selection of auditors, we still find audit fee premiums on Big N auditors, which is the second important factor on audit fee determination. On-balance-sheet financial risk measures in terms of capital adequacy, loan composition, earnings and asset quality performance have positive impacts on audit fees. After allowing for the positive influence of on-balance sheet financial risks and entity size on off-balance sheet risk, the off-balance sheet risk measure, SECRISK, is still positively associated with bank audit fees, both before and after the onset of the financial crisis. The consistent results from this study compared with prior literature provide supporting evidence and enhance confidence on the application of this new research technique in archival accounting studies.