175 resultados para Parallel building blocks


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This project explored the potential for halogen bonds to predictably organise metal-containing molecular building blocks in crystalline materials. A novel method for the halogen bond mediated crystal engineering of metal complexes was discovered, which led to the preparation of new materials with potential applications in molecular switching devices and advanced memory storage systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The changing and challenging conditions of the 21st century have been significantly impacting our economy, society and built and natural environments. Today generation of knowledge—mostly in the form of technology and innovation—is seen as a panacea for the adaptation to changes and management of challenges (Yigitcanlar, 2010a). Making space and place that concentrate on knowledge generation, thus, has become a priority for many nations (van Winden, 2010). Along with this movement, concepts like knowledge cities and knowledge precincts are coined as places where citizenship undertakes a deliberate and systematic initiative for founding its development on the identification and sustainable balance of its shared value system, and bases its ability to create wealth on its capacity to generate and leverage its knowledge capabilities (Carrillo, 2006; Yigitcanlar, 2008a). In recent years, the term knowledge precinct (Hu & Chang, 2005) in its most contemporary interpretation evolved into knowledge community precinct (KCP). KCP is a mixed-use post-modern urban setting—e.g., flexible, decontextualized, enclaved, fragmented—including a critical mass of knowledge enterprises and advanced networked infrastructures, developed with the aim of collecting the benefits of blurring the boundaries of living, shopping, recreation and working facilities of knowledge workers and their families. KCPs are the critical building blocks of knowledge cities, and thus, building successful KCPs significantly contributes to the formation of prosperous knowledge cities. In the literature this type of development—a place containing economic prosperity, environmental sustainability, just socio‐spatial order and good governance—is referred as knowledge-based urban development (KBUD). This chapter aims to provide a conceptual understanding on KBUD and its contribution to the building of KCPs that supports the formation of prosperous knowledge cities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we analyse the role of some of the building blocks of SHA-256. We show that the disturbance-correction strategy is applicable to the SHA-256 architecture and we prove that functions Σ, σ are vital for the security of SHA-256 by showing that for a variant without them it is possible to find collisions with complexity 2^64 hash operations. As a step towards an analysis of the full function, we present the results of our experiments on Hamming weights of expanded messages for different variants of the message expansion and show that there exist low-weight expanded messages for XOR-linearised variants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cumulative arrays have played an important role in the early development of the secret sharing theory. They have not been subject to extensive study so far, as the secret sharing schemes built on them generally result in much larger sizes of shares, when compared with other conventional approaches. Recent works in threshold cryptography show that cumulative arrays may be the appropriate building blocks in non-homomorphic threshold cryptosystems where the conventional secret sharing methods are generally of no use. In this paper we study several extensions of cumulative arrays and show that some of these extensions significantly improve the performance of conventional cumulative arrays. In particular, we derive bounds on generalised cumulative arrays and show that the constructions based on perfect hash families are asymptotically optimal. We also introduce the concept of ramp perfect hash families as a generalisation of perfect hash families for the study of ramp secret sharing schemes and ramp cumulative arrays.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is shown that, owing to selective delivery of ionic and neutral building blocks directly from the ionized gas phase and via surface migration, plasma environments offer a better deal of deterministic synthesis of ordered nanoassemblies compared to thermal chemical vapor deposition. The results of hybrid Monte Carlo (gas phase) and adatom self-organization (surface) simulation suggest that higher aspect ratios and better size and pattern uniformity of carbon nanotip microemitters can be achieved via the plasma route. © 2006 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synthesis of various functional nanoassemblies, by using a combination of low-pressure reactive plasma-enhanced chemical deposition and plasma-assisted rf magnetron sputtering deposition is reported. This paper details how selective generation and manipulation of the required building blocks and management of unwanted nanoparticle contaminants, can be used for plasma-aided nanofabrication of carbon nanotip microemitter structures, ultra-high aspect ratio semiconductor nanowires, ordered quantum dot arrays, and microporous hydroxyapatite bioceramics. Emerging challenges of the plasma-aided synthesis of functional nanofilms and nanoassemblies are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The results of two-dimensional fluid simulation of number densities and fluxes of the main building blocks and surface preparation species involved in nanoassembly of carbon-based nanopatterns in Ar+H2+C2H2 reactive plasmas are reported. It is shown that the process parameters and non-uniformity of surface fluxes of each particular species may affect the targeted nanopattern quality. The results can be used to improve predictability of plasma-aided nanofabrication processes and optimize the parameters of plasma nanotools.KGaA, Weinheim.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There has been significant progress in the past 2 decades in the field of organic and polymer thin-film transistors. In this paper, we report a combination of stable materials, device architecture, and process conditions that resulted in a patterned gate, small channel length (<5 μm) device that possesses a scaled field-induced conductivity in air that is higher than any organic/polymer transistor reported thus far. The operating voltage is below 10 V; the on-off ratio is high; and the active materials are solution-processable. The semiconducting polymer is a new donor-acceptor polymer with furan-substituted diketopyrrolopyrrole and thienyl-vinylene-thienyl building blocks in the conjugated backbone. One of the major striking features of our work is that the patterned-gate device architecture is suitable for practical applications. We also propose a figure of merit to meaningfully compare polymer/organic transistor performance that takes into account mobility and operating voltage. With this figure of merit, we compare leading organic and polymer transistors that have been hitherto reported. The material and device architecture have shown very high mobility and low operating voltage for such short channel length (below 5 μm) organic/polymer transistors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

(Figure Presented) Unusual conductivity effects: Suitably functionalized dendrimers (see picture) are capable of forming truly covalent three-dimensional networks with remarkably high conductivity on electrochemical doping. Depending on the charging level of the electroactive components used as building blocks for the dendrimer core and the perimeter, two separated regimes of electrical conductivity can be observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, the electron-accepting diketopyrrolopyrrole (DPP) moiety has been receiving considerable attention for constructing donor-acceptor (D-A) type organic semiconductors for a variety of applications, particularly for organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). Through association of the DPP unit with appropriate electron donating building blocks, the resulting D-A molecules interact strongly in the solid state through intermolecular D-A and π-π interactions, leading to highly ordered structures at the molecular and microscopic levels. The closely packed molecules and crystalline domains are beneficial for intermolecular and interdomain (or intergranular) charge transport. Furthermore, the energy levels can be readily adjusted, affording p-type, n-type, or ambipolar organic semiconductors with highly efficient charge transport properties in OTFTs. In the past few years, a number of DPP-based small molecular and polymeric semiconductors have been reported to show mobility close to or greater than 1 cm2 V -1 s-1. DPP-based polymer semiconductors have achieved record high mobility values for p-type (hole mobility: 10.5 cm2 V-1 s-1), n-type (electron mobility: 3 cm2 V-1 s-1), and ambipolar (hole/electron mobilities: 1.18/1.86 cm2 V-1 s-1) OTFTs among the known polymer semiconductors. Many DPP-based organic semiconductors have favourable energy levels and band gaps along with high hole mobility, which enable them as promising donor materials for OPVs. Power conversion efficiencies (PCE) of up to 6.05% were achieved for OPVs using DPP-based polymers, demonstrating their potential usefulness for the organic solar cell technology. This article provides an overview of the recent exciting progress made in DPP-containing polymers and small molecules that have shown high charge carrier mobility, around 0.1 cm2 V-1 s-1 or greater. It focuses on the structural design, optoelectronic properties, molecular organization, morphology, as well as performances in OTFTs and OPVs of these high mobility DPP-based materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fused aromatic furan-substituted diketopyrrolopyrrole and novel diphenylfumaronitrile conjugated building blocks are used for the synthesis of an alternating copolymer (DPFN-DPPF) via Suzuki polycondensation. In this paper, the first attempt to use the diphenylfumaronitrile building block for the synthesis of conjugated polymer is described. The number-average and weight-average molecular weights calculated for DPFN-DPPF are 20?661 and 66?346 g mol-1, respectively. The optical bandgap calculated for DPFN-DPPF is 1.53 eV whereas the highest occupied molecular orbital (HOMO) value calculated by photoelectron spectroscopy in air (PESA) is 5.50 eV. The calculated HOMO value is lower, which is suitable for stable organic electronic devices. DPFN-DPPF polymer is used as an active layer in bottom-contact bottom-gate organic thin-film transistor devices and the thin film exhibits a hole mobility of 0.20 cm2 V-1 s-1 in air.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The excellent multi-functional properties of carbon nanotube (CNT) and graphene have enabled them as appealing building blocks to construct 3D carbon-based nanomaterials or nanostructures. The recently reported graphene nanotube hybrid structure (GNHS) is one of the representatives of such nanostructures. This work investigated the relationships between the mechanical properties of the GNHS and its structure basing on large-scale molecular dynamics simulations. It is found that increasing the length of the constituent CNTs, the GNHS will have a higher Young’s modulus and yield strength. Whereas, no strong correlation is found between the number of graphene layers and Young’s modulus and yield strength, though more graphene layers intends to lead to a higher yield strain. In the meanwhile, the presences of multi-wall CNTs are found to greatly strengthen the hybrid structure. Generally, the hybrid structures exhibit a brittle behavior and the failure initiates from the connecting regions between CNT and graphene. More interestingly, affluent formations of monoatomic chains and rings are found at the fracture region. This study provides an in-depth understanding of the mechanical performance of the GNHSs while varying their structures, which will shed lights on the design and also the applications of the carbon-based nanostructures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Contemporary society is in the midst of the boundless generation and collection of data, data that is produced from almost any measurable act. Be it weather or transport data sets published by government agencies, or the individual and interpersonal data generated by our digital interactions; a server somewhere is collating. With the rise of this digital data phenomenon comes questions of comprehension, purpose, ownership and translation. Without mediation digital data is an immense abstract list of text and numbers and in this abstracted form data sets become detached from the circumstances of their creation. Artists and digital creatives are building works from these constantly evolving data sets to develop a discourse that investigates, appropriates, reveals and reflects upon the society and environment that generates this medium. Datascape presents a range of works that use data as building blocks to facilitate connections and understanding around a range of personal, social and worldly issues. The exhibition is concerned with creating an opportunity for experiential discovery through engaging with work from some of the world’s prominent creatives in this field of practice. Utilising three thematic lenses: Generative Currents, the Anti-Sublime and the Human Context, the works offer a variety of pathways to traverse the Datascape. Lubi Thomas and Rachael Parsons, QUT Creative Industries Precinct"

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biomolecules are chemical compounds found in living organisms which are the building blocks of life and perform important functions. Fluctuation from the normal concentration of these biomolecules in living system leads to several disorders. Thus the exact determination of them in human fluids is essential in the clinical point of view. High performance liquid chromatography, flow injection analysis, capillary electrophoresis, fluorimetry, spectrophotometry, electrochemical and chemiluminescence techniques were usually used for the determination of biologically important molecules. Among these techniques, electrochemical determination of biomolecules has several advantages over other methods viz., simplicity, selectivity and sensitivity. In the past two decades, electrodes modified with polymer films, self-assembled monolayers containing different functional groups and carbon paste have been used as electrochemical sensors. But in recent years, nanomaterials based electrochemical sensors play an important role in the improvement of public health because of its rapid detection, high sensitivity and specificity in clinical diagnostics. To date gold nanoparticles (AuNPs) have received arousing attention mainly due to their fascinating electronic and optical properties as a consequence of their reduced dimensions. These unique properties of AuNPs make them as an ideal candidate for the immobilization of enzymes for biosensing. Further, the electrochemical properties of AuNPs reveal that they exhibit interesting properties by enhancing the electrode conductivity, facilitating electron transfer and improving the detection limit of biomolecules. In this chapter, we summarized the different strategies used for the attachment of AuNPs on electrode surfaces and highlighted the electrochemical determination of glucose, ascorbic acid (AA), uric acid (UA) and dopamine derivatives using the AuNPs modified electrodes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cryptographic hash functions are an important tool of cryptography and play a fundamental role in efficient and secure information processing. A hash function processes an arbitrary finite length input message to a fixed length output referred to as the hash value. As a security requirement, a hash value should not serve as an image for two distinct input messages and it should be difficult to find the input message from a given hash value. Secure hash functions serve data integrity, non-repudiation and authenticity of the source in conjunction with the digital signature schemes. Keyed hash functions, also called message authentication codes (MACs) serve data integrity and data origin authentication in the secret key setting. The building blocks of hash functions can be designed using block ciphers, modular arithmetic or from scratch. The design principles of the popular Merkle–Damgård construction are followed in almost all widely used standard hash functions such as MD5 and SHA-1.