135 resultados para Papillomavirus Vaccines
Resumo:
Chlamydia trachomatis is a major cause of sexually transmitted diseases worldwide. There currently is no vaccine to protect against chlamydial infection of the female reproductive tract. Vaccine development has predominantly involved using the murine model, however infection of female guinea pigs with Chlamydia caviae more closely resembles chlamydial infection of the human female reproductive tract, and presents a better model to assess potential human chlamydial vaccines. We immunised female guinea pigs intranasally with recombinant major outer membrane protein (r-MOMP) combined with CpG-10109 and cholera toxin adjuvants. Both systemic and mucosal immune responses were elicited in immunised animals. MOMP-specific IgG and IgA were present in the vaginal mucosae, and high levels of MOMP-specific IgG were detected in the serum of immunised animals. Antibodies from the vaginal mucosae were also shown to be capable of neutralising C. caviae in vitro. Following immunisation, animals were challenged intravaginally with a live C. caviae infection of 102 inclusion forming units. We observed a decrease in duration of infection and a significant (p<0.025) reduction in infection load in r-MOMP immunised animals, compared to animals immunised with adjuvant only. Importantly, we also observed a marked reduction in upper reproductive tract (URT) pathology in r-MOMP immunised animals. Intranasal immunisation of female guinea pigs with r-MOMP was able to provide partial protection against C. caviae infection, not only by reducing chlamydial burden but also URT pathology. This data demonstrates the value of using the guinea pig model to evaluate potential chlamydial vaccines for protection against infection and disease pathology caused by C. trachomatis in the female reproductive tract.
Resumo:
Chlamydial infections of humans can cause blindness and infertility as a result of diseases such as keratoconjunctivitis (trachoma), urethritis and cervicitis. However, in greater than half of all chlamydial diseases in males and females there are no signs or symptoms of infection. Chlamydia trachomatis is the causative bacterial organism responsible for the global estimate of 40.6 million people currently suffering with active trachoma and for the five million new cases of sexually transmitted infections each year in the United States of America. Even though antibiotics are available to treat Chlamydia, the incidence of each of these primarily asymptomatic infections continues to increase. In this Chapter we review the current knowledge of C.trachomatis including clinicial diseases and sequelae, the chlamydial developmental cycle in vivo, immunobiology and immune responses to infections, chlamydial genomics and vaccine development.
Resumo:
A major challenge for Streptococcus pyogenes vaccine development is the identification of epitopes that confer protection from infection by multiple S. pyogenes M-types. Here we have identified and characterised the distribution of common variant sequences from individual repeat units of the C-repeat region (CRR) of M-proteins representing 77 different M-types. Three polyvalent fusion vaccine candidates (SV1, SV2 and SV3) incorporating the most common variants were subsequently expressed and purified, and demonstrated to be alpha-helical by Circular Dichroism (CD), a secondary conformational characteristic of the CRR in the M-protein. Antibodies raised against each of these constructs recognise M-proteins that vary in their CRR, and bind to the surface of multiple S. pyogenes isolates. Antibodies raised against SV1, containing five variant sequences, also kill heterologous S. pyogenes isolates in in vitro bactericidal assays. Further structural characterisation of this construct demonstrated the conformation of SV1 was stable at different pHs, and thermal unfolding of SV1 a reversible process. Our findings demonstrate that linkage of multiple variant sequences into a single recombinant construct overcomes the need to embed the variant sequences in foreign helix promoting flanking sequences for conformational stability, and demonstrates the viability of the polyvalent candidates as global S. pyogenes vaccine candidates.
Resumo:
Background India has a large and evolving HIV epidemic. Little is known about cancer risk in Indian persons with HIV/AIDS (PHA) but risk is thought to be low. Methods To describe the state of knowledge about cancer patterns in Indian PHA, we reviewed reports from the international and Indian literature. Results As elsewhere, non-Hodgkin lymphomas dominate the profile of recognized cancers, with immunoblastic/large cell diffuse lymphoma being the most common type. Hodgkin lymphoma is proportionally increased, perhaps because survival with AIDS is truncated by fatal infections. In contrast, Kaposi sarcoma is rare, in association with an apparently low prevalence of Kaposi sarcoma-associated herpesvirus. If confirmed, the reasons for the low prevalence need to be understood. Cervical, anal, vulva/vaginal and penile cancers all appear to be increased in PHA, based on limited data. The association may be confounded by sexual behaviors that transmit both HIV and human papillomavirus. Head and neck tumor incidence may also be increased, an important concern since these tumors are among the most common in India. Based on limited evidence, the increase is at buccal/palatal sites, which are associated with tobacco and betel nut chewing rather than human papillomavirus. Conclusion With improving care of HIV and better management of infections, especially tuberculosis, the longer survival of PHA in India will likely increase the importance of cancer as a clinical problem in India. With the population's geographic and social diversity, India presents unique research opportunities that can be embedded in programs targeting HIV/AIDS and other public health priorities.
Resumo:
Chlamydial infections represent a major threat to the long-term survival of the koala and a successful vaccine would provide a valuable management tool. Vaccination however has the potential to enhance inflammatory disease in animals exposed to a natural infection prior to vaccination, a finding in early human and primate trials of whole cell vaccines to prevent trachoma. In the present study, we vaccinated both healthy koalas as well as clinically diseased koalas with a multi-subunit vaccine consisting of Chlamydia pecorum MOMP and NrdB mixed with immune stimulating complex as adjuvant. Following vaccination, there was no increase in inflammatory pathological changes in animals previously infected with Chlamydia. Strong antibody (including neutralizing antibodies) and lymphocyte proliferation responses were recorded in all vaccinated koalas, both healthy and clinically diseased. Vaccine induced antibodies specific for both vaccine antigens were observed not only in plasma but also in ocular secretions. Our data shows that an experimental chlamydial vaccine is safe to use in previously infected koalas, in that it does not worsen infection-associated lesions. Furthermore, the prototype vaccine is effective, as demonstrated by strong levels of neutralizing antibody and lymphocyte proliferation responses in both healthy and clinically diseased koalas. Collectively, this work illustrates the feasibility of developing a safe and effective Chlamydia vaccine as a tool for management of disease in wild koalas.
Resumo:
Infection of the female genital tract can result in serious morbidities and mortalities from reproductive disability, pelvic inflammatory disease and cancer, to impacts on the fetus, such as infant blindness. While therapeutic agents are available, frequent testing and treatment is required to prevent the occurrence of the severe disease sequelae. Hence, sexually transmitted infections remain a major public health burden with ongoing social and economic barriers to prevention and treatment. Unfortunately, while there are two success stories in the development of vaccines to protect against HPV infection of the female reproductive tract, many serious infectious agents impacting on the female reproductive tract still have no vaccines available. Vaccination to prevent infection of the female reproductive tract is an inherently difficult target, with many impacting factors, such as appropriate vaccination strategies/mechanisms to induce a suitable protective response locally in the genital tract, variation in the local immune responses due to the hormonal cycle, selection of vaccine antigen(s) that confers effective protection against multiple variants of a single pathogen (e.g., the different serovars of Chlamydia trachomatis) and timing of the vaccine administration prior to infection exposure. Despite these difficulties, there are numerous ongoing efforts to develop effective vaccines against these infectious agents and it is likely that this important human health field will see further major developments in the next 5 years.
Resumo:
An introduction to biologics 23.1 Introduction: Principles of biologics and their use as medicines 23.2 Protein biologics used as drugs 23.2.1 Proteins that function through enzymatic or regulatory activity. 23.2.1.1 Biologics as replacement of a deficient or abnormal protein. 23.2.1.2 Proteins that augment an existing biological process. 23.2.1.3 Proteins that provide a novel function or activity. 23.2.2. Proteins that function through specific targeting activity. 23.2.2.1. Monoclonal antibody nomenclature. 23.2.2.2. Naked monoclonal antibodies. 23.2.2.3. Conjugated monoclonal antibodies. 23.2.3. Recombinant protein vaccines.
Resumo:
Background: HIV-1 Pr55gag virus-like particles (VLPs) expressed by baculovirus in insect cells are considered to be a very promising HIV-1 vaccine candidate, as they have been shown to elicit broad cellular immune responses when tested in animals, particularly when used as a boost to DNA or BCG vaccines. However, it is important for the VLPs to retain their structure for them to be fully functional and effective. The medium in which the VLPs are formulated and the temperature at which they are stored are two important factors affecting their stability. FINDINGS We describe the screening of 3 different readily available formulation media (sorbitol, sucrose and trehalose) for their ability to stabilise HIV-1 Pr55gag VLPs during prolonged storage. Transmission electron microscopy (TEM) was done on VLPs stored at two different concentrations of the media at three different temperatures (4[degree sign]C, --20[degree sign]C and -70[degree sign]C) over different time periods, and the appearance of the VLPs was compared. VLPs stored in 15% trehalose at -70[degree sign]C retained their original appearance the most effectively over a period of 12 months. VLPs stored in 5% trehalose, sorbitol or sucrose were not all intact even after 1 month storage at the temperatures tested. In addition, we showed that VLPs stored under these conditions were able to be frozen and re-thawed twice before showing changes in their appearance. Conclusions Although the inclusion of other analytical tools are essential to validate these preliminary findings, storage in 15% trehalose at -70[degree sign]C for 12 months is most effective in retaining VLP stability.
Resumo:
Background: HIV-1 Gag virus like particles (VLPs) used as candidate vaccines are regarded as inert particles as they contain no replicative nucleic acid, although they do encapsidate cellular RNAs. During HIV-1 Gag VLP production in baculovirus-based expression systems, VLPs incorporate the baculovirus Gp64 envelope glycoprotein, which facilitates their entry into mammalian cells. This suggests that HIV-1 Gag VLPs produced using this system facilitate uptake and subsequent expression of encapsidated RNA in mammalian cells - an unfavourable characteristic for a vaccine. Methods. HIV-1 Gag VLPs encapsidating reporter chloramphenicol acetyl transferase (CAT) RNA, were made in insect cells using the baculovirus expression system. The presence of Gp64 on the VLPs was verified by western blotting and RT-PCR used to detect and quantitate encapsidated CAT RNA. VLP samples were heated to inactivate CAT RNA. Unheated and heated VLPs incubated with selected mammalian cell lines and cell lysates tested for the presence of CAT protein by ELISA. Mice were inoculated with heated and unheated VLPs using a DNA prime VLP boost regimen. Results: HIV-1 Gag VLPs produced had significantly high levels of Gp64 (∼1650 Gp64 molecules/VLP) on their surfaces. The amount of encapsidated CAT RNA/g Gag VLPs ranged between 0.1 to 7 ng. CAT protein was detected in 3 of the 4 mammalian cell lines incubated with VLPs. Incubation with heated VLPs resulted in BHK-21 and HeLa cell lysates showing reduced CAT protein levels compared with unheated VLPs and HEK-293 cells. Mice inoculated with a DNA prime VLP boost regimen developed Gag CD8 and CD4 T cell responses to GagCAT VLPs which also boosted a primary DNA response. Heating VLPs did not abrogate these immune responses but enhanced the Gag CD4 T cell responses by two-fold. Conclusions: Baculovirus-produced HIV-1 Gag VLPs encapsidating CAT RNA were taken up by selected mammalian cell lines. The presence of CAT protein indicates that encapsidated RNA was expressed in the mammalian cells. Heat-treatment of the VLPs altered the ability of protein to be expressed in some cell lines tested but did not affect the ability of the VLPs to stimulate an immune response when inoculated into mice. © 2011 Valley-Omar et al; licensee BioMed Central Ltd.
Resumo:
Background During a global influenza pandemic, the vaccine requirements of developing countries can surpass their supply capabilities, if these exist at all, compelling them to rely on developed countries for stocks that may not be available in time. There is thus a need for developing countries in general to produce their own pandemic and possibly seasonal influenza vaccines. Here we describe the development of a plant-based platform for producing influenza vaccines locally, in South Africa. Plant-produced influenza vaccine candidates are quicker to develop and potentially cheaper than egg-produced influenza vaccines, and their production can be rapidly upscaled. In this study, we investigated the feasibility of producing a vaccine to the highly pathogenic avian influenza A subtype H5N1 virus, the most generally virulent influenza virus identified to date. Two variants of the haemagglutinin (HA) surface glycoprotein gene were synthesised for optimum expression in plants: these were the full-length HA gene (H5) and a truncated form lacking the transmembrane domain (H5tr). The genes were cloned into a panel of Agrobacterium tumefaciens binary plant expression vectors in order to test HA accumulation in different cell compartments. The constructs were transiently expressed in tobacco by means of agroinfiltration. Stable transgenic tobacco plants were also generated to provide seed for stable storage of the material as a pre-pandemic strategy. Results For both transient and transgenic expression systems the highest accumulation of full-length H5 protein occurred in the apoplastic spaces, while the highest accumulation of H5tr was in the endoplasmic reticulum. The H5 proteins were produced at relatively high concentrations in both systems. Following partial purification, haemagglutination and haemagglutination inhibition tests indicated that the conformation of the plant-produced HA variants was correct and the proteins were functional. The immunisation of chickens and mice with the candidate vaccines elicited HA-specific antibody responses. Conclusions We managed, after synthesis of two versions of a single gene, to produce by transient and transgenic expression in plants, two variants of a highly pathogenic avian influenza virus HA protein which could have vaccine potential. This is a proof of principle of the potential of plant-produced influenza vaccines as a feasible pandemic response strategy for South Africa and other developing countries.
Resumo:
The field of plant-made therapeutics in South Africa is well established in the form of exploitation of the country's considerable natural plant diversity, both in the use of native plants in traditional herbal medicines over many centuries, and in the more modern extraction of pharmacologically-active compounds from plants, including those known to traditional healers. In recent years, this has been added to by the use of plants for the stable or transient expression of pharmaceutically-important compounds, largely protein-based biologics and vaccines. South Africa has a well-developed plant biotechnology community, as well as a comprehensive legislative framework for the regulation of the exploitation of local botanic resources, and of genetically-modified organisms. The review explores the investigation of both conventional and recombinant plants for pharmaceutical use in South Africa, as well as describing the relevant legislative and regulatory frameworks. Potential opportunities for national projects, as well as factors limiting biopharming in South Africa are discussed. © 2011.
Resumo:
Background We have investigated the possibility and feasibility of producing the HPV-11 L1 major capsid protein in transgenic Arabidopsis thaliana ecotype Columbia and Nicotiana tabacum cv. Xanthi as potential sources for an inexpensive subunit vaccine. Results Transformation of plants was only achieved with the HPV-11 L1 gene with the C-terminal nuclear localization signal (NLS-) encoding region removed, and not with the full-length gene. The HPV-11 L1 NLS- gene was stably integrated and inherited through several generations of transgenic plants. Plant-derived HPV-11 L1 protein was capable of assembling into virus-like particles (VLPs), although resulting particles displayed a pleomorphic phenotype. Neutralising monoclonal antibodies binding both surface-linear and conformation-specific epitopes bound the A. thaliana-derived particles and - to a lesser degree - the N. tabacum-derived particles, suggesting that plant-derived and insect cell-derived VLPs displayed similar antigenic properties. Yields of up to 12 μg/g of HPV-11 L1 NLS- protein were harvested from transgenic A. thaliana plants, and 2 μg/g from N. tabacum plants - a significant increase over previous efforts. Immunization of New Zealand white rabbits with ∼50 μg of plant-derived HPV-11 L1 NLS- protein induced an antibody response that predominantly recognized insect cell-produced HPV-11 L1 NLS- and not NLS+ VLPs. Evaluation of the same sera concluded that none of them were able to neutralise pseudovirion in vitro. Conclusion We expressed the wild-type HPV-11 L1 NLS- gene in two different plant species and increased yields of HPV-11 L1 protein by between 500 and 1000-fold compared to previous reports. Inoculation of rabbits with extracts from both plant types resulted in a weak immune response, and antisera neither reacted with native HPV-11 L1 VLPs, nor did they neutralise HPV-11 pseudovirion infectivity. This has important and potentially negative implications for the production of HPV-11 vaccines in plants. © 2007 Kohl et al; licensee BioMed Central Ltd.
Resumo:
Human papillomaviruses (HPV) are responsible for the most common human sexually transmitted viral infections, and high-risk types are responsible for causing cervical and other cancers. The minor capsid protein L2 of HPV plays important roles in virus entry into cells, localisation of viral components to the nucleus, in DNA binding, capsid formation and stability. It also elicits antibodies that are more cross-reactive between HPV types than does the major capsid protein L1, making it an attractive potential target for new-generation, more broadly protective subunit vaccines against HPV infections. However, its low abundance in natural capsids-12-72 molecules per 360 copies of L1-limits its immunogenicity. This review will explore the biological roles of the protein, and prospects for its use in new vaccines. © 2009 Springer-Verlag.
Resumo:
HIV-1 Pr55 Gag virus-like particles (VLPs) are strong immunogens with potential as candidate HIV vaccines. VLP immunogenicity can be broadened by making chimaeric Gag molecules: however, VLPs incorporating polypeptides longer than 200 aa fused in frame with Gag have not yet been reported. We constructed a range of gag-derived genes encoding in-frame C-terminal fusions of myristoylation-competent native Pr55Gag and p6-truncated Gag (Pr50Gag) to test the effects of polypeptide length and sequence on VLP formation and morphology, in an insect cell expression system. Fused sequences included a modified reverse transcriptase-Tat-Nef fusion polypeptide (RTTN, 778 aa), and truncated versions of RTTN ranging from 113 aa to 450 aa. Baculovirus-expressed chimaeric proteins were examined by western blot and electron microscopy. All chimaeras formed VLPs which could be purified by sucrose gradient centrifugation. VLP diameter increased with protein MW, from ∼100 nm for Pr55Gag to ∼250 nm for GagRTTN. The presence or absence of the Gag p6 region did not obviously affect VLP formation or appearance. GagRT chimaeric particles were successfully used in mice to boost T-cell responses to Gag and RT that were elicited by a DNA vaccine encoding a GagRTTN polypeptide, indicating the potential of such chimaeras to be used as candidate HIV vaccines. © 2008 Elsevier B.V. All rights reserved.
Resumo:
A baculovirus-insect cell expression system potentially provides the means to produce prophylactic HIV-1 virus-like particle (VLP) vaccines inexpensively and in large quantities. However, the system must be optimized to maximize yields and increase process efficiency. In this study, we optimized the production of two novel, chimeric HIV-1 VLP vaccine candidates (GagRT and GagTN) in insect cells. This was done by monitoring the effects of four specific factors on VLP expression: these were insect cell line, cell density, multiplicity of infection (MOI), and infection time. The use of western blots, Gag p24 ELISA, and four-factorial ANOVA allowed the determination of the most favorable conditions for chimeric VLP production, as well as which factors affected VLP expression most significantly. Both VLP vaccine candidates favored similar optimal conditions, demonstrating higher yields of VLPs when produced in the Trichoplusia ni Pro insect cell line, at a cell density of 1 × 106 cells/mL, and an infection time of 96 h post infection. It was found that cell density and infection time were major influencing factors, but that MOI did not affect VLP expression significantly. This work provides a potentially valuable guideline for HIV-1 protein vaccine optimization, as well as for general optimization of a baculovirus-based expression system to produce complex recombinant proteins. © 2009 American Institute of Chemical Engineers.