108 resultados para POWDER MICROELECTRODE
Resumo:
Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) have been used to compare samples of YBa2Cu3O7 (YBCO) synthesised by the solid-state method and a novel co-precipitation technique. XRD results indicate that YBCO prepared by these two methods are phase pure, however the Raman and SEM results show marked differences between these samples.
Resumo:
Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot pressed B13C2 sample shows a high density of variable width twins normal to (10-11). Subtle shifts or offsets of lattice fringes along the twin plane and normal to (10 5) were also observed. A B4C powder showed little evidence of stacking disorder in crystalline regions.
Resumo:
This study investigates the potential of a Zn/Al layered double hydroxides (LHDs) as an adsorbent for the removal of iodine species from potable water (Theiss et al., 2011b). In this paper the resultant materials were characterised using powder x-ray diffraction (XRD) and thermogravimetry (TG) coupled with evolved gas mass spectrometry (EGMS) (Frost, et al, 2005, Rives, et al, 2001).
Resumo:
The formation of new materials in the form of alumino-silicate derivatives from 2:1 layer clay materials which are obtained by the chemical modification of 2:1 layer clay minerals by reaction with a salt having the formula MX wherein M is ammonium ion or alkali metal cation and X is a halide. The new materials have the following characteristics: (a) an amorphous x-ray diffraction signal manifest as a broad hump using x-ray powder diffraction between 22.degree. and 32.degree. 2.theta. using CuK.alpha. radiation; and (b) the presence of primarily tetrahedrally coordinated aluminum.
Resumo:
Stichtite is a naturally occurring layered double hydroxide (LDH) with the ideal chemical formula Mg6Cr2CO3(OH)16·4H2O. It has received less attention in the literature than other LDHs and is often described as a rare mineral; however, abundant deposits of the mineral do exist. In this article we aim to review a number of significant publications concerning the mineral stichtite, including papers covering the discovery, geological origin, synthesis and characterizsation of stichtite. Characterization techniques reviewed include powder X-ray diffraction (XRD), infrared spectroscopy (IR), near infrared spectroscopy (NIR), Raman spectroscopy (Raman), thermogravimetry (TG) and electron microprobe analysis.
Resumo:
Production of nanofibrous polyacrylonitrile/calcium carbonate (PAN/CaCO3) nanocomposite web was carried out through solution electrospinning process. Pore generating nanoparticles were leached from the PAN matrices in hydrochloric acid bath with the purpose of producing an ultimate nanoporous structure. The possible interaction between CaCO3 nanoparticles and PAN functional groups was investigated. Atomic absorption method was used to measure the amount of extracted CaCO3 nanoparticles. Morphological observation showed nanofibers of 270–720 nm in diameter containing nanopores of 50–130 nm. Monitoring the governing parameters statistically, it was found that the amount of extraction (ε) of CaCO3was increased when the web surface area (a) was broadened according to a simple scaling law (ε = 3.18 a0.4). The leaching process was maximized in the presence of 5% v/v of acid in the extraction bath and 5 wt % of CaCO3 in the polymer solution. Collateral effects of the extraction time and temperature showed exponential growth within a favorable extremum at 50°C for 72 h. Concentration of dimethylformamide as the solvent had no significant impact on the extraction level.
Resumo:
Boron–nitrogen containing compounds with high hydrogen contents as represented by ammonia borane (NH3BH3) have recently attracted intense interest for potential hydrogen storage applications. One such compound is [(NH3)2BH2]B3H8 with a capacity of 18.2 wt% H. Two safe and efficient synthetic routes to [(NH3)2BH2]B3H8 have been developed for the first time since it was discovered 50 years ago. The new synthetic routes avoid a dangerous starting chemical, tetraborane (B4H10), and afford a high yield. Single crystal X-ray diffraction analysis reveals N–Hδ+Hδ−–B dihydrogen interactions in the [(NH3)2BH2]B3H8·18-crown-6 adduct. Extended strong dihydrogen bonds were observed in pure [(NH3)2BH2]B3H8 through crystal structure solution based upon powder X-ray analysis. Pyrolysis of [(NH3)2BH2]B3H8 leads to the formation of hydrogen gas together with appreciable amounts of volatile boranes below 160 °C.
Resumo:
Thermogravimetric analysis (TG) and powder X-ray diffraction (PXRD) were used to study some selected Mg/Al and Zn/Al layered double hydroxides (LDHs) prepared by co-precipitation. A Mg/Al hydrotalcite was investigated before and after reformation in fluoride and nitrate solutions. Little change in the TG or PXRD patterns was observed. It was proposed that successful intercalation of nitrate anions has occurred. However, the absence of any change in the d(003) interlayer spacing suggests that fluoride anions were not intercalated between the LDH layers. Any fluoride anions that were removed from solution are most likely adsorbed onto the outer surfaces of the hydrotalcite. As fluoride removal was not quantified it is not possible to confirm that this has happened without further experimentation. Carbonate is probably intercalated into the interlayer of these hydrotalcites, as well as fluoride or nitrate. The carbonate most likely originates from either incomplete decarbonation during thermal activation or adsorption from the atmosphere or dissolved in the deionised water. Small and large scale co-precipitation syntheses of a Zn/Al LDH were also investigated to determine if there was any change in the product. While the small scale experiment produced a good quality LDH of reasonable purity; the large scale synthesis resulted in several additional phases. Imprecise measurement and difficulty in handling the large quantities of reagents appeared to be sufficient to alter the reaction conditions causing a mixture of phases to be formed.
Resumo:
Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants.
Resumo:
Periodontitis results from the destructive inflammatory reaction of the host elicited by a bacterial biofilm adhering to the tooth surface and if left untreated, may lead to the loss of the teeth and the surrounding tissues, including the alveolar bone. Cementum is a specialized calcified tissue covering the tooth root and an essential part of the periodontium which enables the attachment of the periodontal ligament to the root and the surrounding alveolar bone. Periodontal ligament cells (PDLCs) represent a promising cell source for periodontal tissue engineering. Since cementogenesis is the critical event for the regeneration of periodontal tissues, this study examined whether inorganic stimuli derived from bioactive bredigite (Ca7MgSi4O16) bioceramics could stimulate the proliferation and cementogenic differentiation of PDLCs, and further investigated the involvement of the Wnt/β-catenin signalling pathway during this process via analysing gene/protein expression of PDLCs which interacted with bredigite extracts. Our results showed that the ionic products from bredigite powder extracts led to significantly enhanced proliferation and cementogenic differentiation, including mineralization–nodule formation, ALP activity and a series of bone/cementum-related gene/protein expression (ALP, OPN, OCN, BSP, CAP and CEMP1) of PDLCs in a concentration dependent manner. Furthermore, the addition of cardamonin, a Wnt/β-catenin signalling inhibitor, reduced the pro-cementogenesis effect of the bredigite extracts, indicating the involvement of the Wnt/β-catenin signalling pathway in the cementogenesis of PDLCs induced by bredigite extracts. The present study suggests that an entirely inorganic stimulus with a specific composition of bredigite bioceramics possesses the capacity to trigger the activation of the Wnt/β-catenin signalling pathway, leading to stimulated differentiation of PDLCs toward a cementogenic lineage. The results indicate the therapeutic potential of bredigite ceramics in periodontal tissue engineering application.
Resumo:
Humans have altered environments and enhanced their wellbeing unlike any other creature on the planet (Hielman & Donda, 2007); this is no different whether the environment is ecological, social or organizational. In recent times, the debate regarding greenhouse effects on the global weather patterns and the sustainment of the earth’s temperature necessary for life support has become quite infamously problematic as society pushes to find new sources of energy both renewable and environmentally sustainable. The feedback received on CSG from both government and companies alike is that the opportunities this industry creates has a lasting range of social and economic benefits worth over fifty (50) billion dollars in projects (Queensland Government, 2013). This however, has been overshadowed by social activist and lobbyist groups as ‘Lock the Gate Alliance’ saying, as one part of their report noted from the National Water Commission, “coal seam gas development could cause significant social impacts by disrupting current land-use practices and the local environment through infrastructure construction and access” (Lock the Gate Alliance, n.d.), and “In recent years both a NSW and Federal Senate inquiry into coal seam gas production were deliberately mislead by an organization that claims to work on behalf of the farming community, This is the battle for the end of the fossil fuel industry. This is the end game..." (Ward, 2013).
Resumo:
Ab initio Density Functional Theory (DFT) calculations are performed to study the diffusion of atomic hydrogen on a Mg(0001) surface and their migration into the subsurface layers. A carbon atom located initially on a Mg(0001) surface can migrate into the sub-surface layer and occupy a fcc site, with charge transfer to the C atom from neighboring Mg atoms. The cluster of postively charged Mg atoms surrounding a sub-surface C is then shown to facilitate the dissociative chemisorption of molecular hydrogen on the Mg(0001) surface, and the surface migration and subsequent diffusion into the subsurface of atomic hydrogen. This helps rationalize the experimentally-observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.
Resumo:
Ab initio density functional theory (DFT) calculations are performed to explore possible catalytic effects on the dissociative chemisorption of hydrogen on a Mg(0001) surface when carbon is incorporated into Mg materials. The computational results imply that a C atom located initially on a Mg(0001) surface can migrate into the subsurface and occupy an fcc interstitial site, with charge transfer to the C atom from neighboring Mg atoms. The effect of subsurface C on the dissociation of H2 on the Mg(0001) surface is found to be relatively marginal: a perfect sublayer of interstitial C is calculated to lower the barrier by 0.16 eV compared with that on a pure Mg(0001) surface. Further calculations reveal, however, that sublayer C may have a significant effect in enhancing the diffusion of atomic hydrogen into the sublayers through fcc channels. This contributes new physical understanding toward rationalizing the experimentally observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.
Resumo:
The techniques of environmental scanning electron microscopy (ESEM) and Raman microscopy have been used to respectively elucidate the morphological changes and nature of the adsorbed species on silver(I) oxide powder, during methanol oxidation conditions. Heating Ag2O in either water vapour or oxygen resulted firstly in the decomposition of silver(I) oxide to polycrystalline silver at 578 K followed by sintering of the particles at higher temperature. Raman spectroscopy revealed the presence of subsurface oxygen and hydroxyl species in addition to surface hydroxyl groups after interaction with water vapour. Similar species were identified following exposure to oxygen in an ambient atmosphere. This behaviour indicated that the polycrystalline silver formed from Ag2O decomposition was substantially more reactive than silver produced by electrochemical methods. The interaction of water at elevated temperatures subsequent to heating silver(I) oxide in oxygen resulted in a significantly enhanced concentration of subsurface hydroxyl species. The reaction of methanol with Ag2O at high temperatures was interesting in that an inhibition in silver grain growth was noted. Substantial structural modification of the silver(I) oxide material was induced by catalytic etching in a methanol/air mixture. In particular, "pin-hole" formation was observed to occur at temperatures in excess of 773 K, and it was also recorded that these "pin- holes" coalesced to form large-scale defects under typical industrial reaction conditions. Raman spectroscopy revealed that the working surface consisted mainly of subsurface oxygen and surface Ag=O species. The relative lack of sub-surface hydroxyl species suggested that it was the desorption of such moieties which was the cause of the "pin-hole" formation.