207 resultados para POLYMERASE-CHAIN-REACTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoietic stem cell (HSC) transplant is a well established curative therapy for some hematological malignancies. However, achieving adequate supply of HSC from some donor tissues can limit both its application and ultimate efficacy. The theory that this limitation could be overcome by expanding the HSC population before transplantation has motivated numerous laboratories to develop ex vivo expansion processes. Pioneering work in this field utilized stromal cells as support cells in cocultures with HSC to mimic the HSC niche. We hypothesized that through translation of this classic coculture system to a three-dimensional (3D) structure we could better replicate the niche environment and in turn enhance HSC expansion. Herein we describe a novel high-throughput 3D coculture system where murine-derived HSC can be cocultured with mesenchymal stem/stromal cells (MSC) in 3D microaggregates—which we term “micromarrows.” Micromarrows were formed using surface modified microwells and their ability to support HSC expansion was compared to classic two-dimensional (2D) cocultures. While both 2D and 3D systems provide only a modest total cell expansion in the minimally supplemented medium, the micromarrow system supported the expansion of approximately twice as many HSC candidates as the 2D controls. Histology revealed that at day 7, the majority of bound hematopoietic cells reside in the outer layers of the aggregate. Quantitative polymerase chain reaction demonstrates that MSC maintained in 3D aggregates express significantly higher levels of key hematopoietic niche factors relative to their 2D equivalents. Thus, we propose that the micromarrow platform represents a promising first step toward a high-throughput HSC 3D coculture system that may enable in vitro HSC niche recapitulation and subsequent extensive in vitro HSC self-renewal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Murine intestinal intraepithelial lymphocytes (IEL) have been shown to contain subsets of alpha/beta TCR+ and gamma/delta TCR+ T cells that spontaneously produce cytokines such as IFN-gamma and IL-5. We have now determined the nature and cell cycle stage of these cytokine-producing T lymphocytes in EIL by using IFN-gamma- and IL-5-specific ELISPOT assay, cytokine-specific mRNA-cDNA dot-blot hybridization and polymerase chain reaction, and flow cytometry (FACS) for DNA analysis. When CD3+ T cells from IEL of normal C3H/HeN mice were separated into low and high density fractions by discontinuous Percoll gradients, IFN-gamma and IL-5 spot-forming cells were only found in the former population. Analysis of mRNA for these cytokines by both IFN-gamma- and IL-5-specific dot-blot hybridization and polymerase chain reaction revealed that higher levels of message for IFN-gamma and IL-5 were also seen in the low density fraction. However, cell cycle analysis of these two fractions by FACS using propidium iodide showed a similar pattern of cell cycle stages in both low and high density populations (G0 + G1 approximately 96 to 98% and S/G2 + M approximately 2 to 4%). Finally, mRNA from gamma/delta TCR+ and alpha/beta TCR+ T cells in both low and high density fractions of IEL were analyzed for IFN-gamma and IL-5 message by polymerase chain reaction. After 35 cycles of amplification, both gamma/delta TCR+ and alpha/beta TCR+ T cells in the low density fraction expressed higher levels of message for these two cytokines when compared with the high density population. These results have now shown that both gamma/delta and alpha/beta TCR+ IEL can be separated into low and high density subsets and both fractions possess a similar stage of cell cycle. However, only the low density cells (in G1 phase) of both gamma/delta and alpha/beta TCR types possess increased cytokine-specific mRNA and produce the cytokines IFN-gamma and IL-5. Our results suggest that alpha/beta TCR+ and gamma/delta TCR+ IEL can produce cytokines without cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Surveillance programs and research for acute respiratory infections in remote Australian communities are complicated by difficulties in the storage and transport of frozen samples to urban laboratories for testing. This study assessed the sensitivity of a simple method for transporting nasal swabs from a remote setting for bacterial polymerase chain reaction (PCR) testing. Methods We sampled every individual who presented to a remote community clinic over a three week period in August at a time of low influenza and no respiratory syncytial virus activity. Two anterior nasal swabs were collected from each participant. The left nare specimen was mailed to the laboratory via routine postal services. The right nare specimen was transported frozen. Testing for six bacterial species was undertaken using real-time PCR. Results One hundred and forty participants were enrolled who contributed 150 study visits and paired specimens for testing. Respiratory illnesses accounted for 10% of the reasons for presentation. Bacteria were identified in 117 (78%) presentations for 110 (79.4%) individuals; Streptococcus pneumoniae and Haemophilus influenzae were the most common (each identified in 58% of episodes). The overall sensitivity for any bacterium detected in mailed specimens was 82.2% (95% CI 73.6, 88.1) compared to 94.8% (95% CI 89.4, 98.1) for frozen specimens. The sensitivity of the two methods varied by species identified. Conclusion The mailing of unfrozen nasal specimens from remote communities appears to influence the utility of the specimen for bacterial studies, with a loss in sensitivity for the detection of any species overall. Further studies are needed to confirm our finding and to investigate the possible mechanisms of effect. Clinical trial registration Australia and New Zealand Clinical Trials Registry Number: ACTRN12609001006235. Keywords: Respiratory bacteria; RT-PCR; Specimen transport; Laboratory methods

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a common chronic inflammatory disease of the central nervous system. Susceptibility to the disease is affected by both environmental and genetic factors. Genetic factors include haplotypes in the histocompatibility complex (MHC) and over 50 non-MHC loci reported by genome-wide association studies. Amongst these, we previously reported polymorphisms in chromosome 12q13-14 with a protective effect in individuals of European descent. This locus spans 288 kb and contains 17 genes, including several candidate genes which have potentially significant pathogenic and therapeutic implications. In this study, we aimed to fine-map this locus. We have implemented a two-phase study: a variant discovery phase where we have used next-generation sequencing and two target-enrichment strategies [long-range polymerase chain reaction (PCR) and Nimblegen's solution phase hybridization capture] in pools of 25 samples; and a genotyping phase where we genotyped 712 variants in 3577 healthy controls and 3269 MS patients. This study confirmed the association (rs2069502, P = 9.9 × 10−11, OR = 0.787) and narrowed down the locus of association to an 86.5 kb region. Although the study was unable to pinpoint the key-associated variant, we have identified a 42 (genotyped and imputed) single-nucleotide polymorphism haplotype block likely to harbour the causal variant. No evidence of association at previously reported low-frequency variants in CYP27B1 was observed. As part of the study we compared variant discovery performance using two target-enrichment strategies. We concluded that our pools enriched with Nimblegen's solution phase hybridization capture had better sensitivity to detect true variants than the pools enriched with long-range PCR, whilst specificity was better in the long-range PCR-enriched pools compared with solution phase hybridization capture enriched pools; this result has important implications for the design of future fine-mapping studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Hyperhomocysteinemia as a consequence of the MTHFR 677 C > T variant is associated with cardiovascular disease and stroke. Another factor that can potentially contribute to these disorders is a depleted nitric oxide level, which can be due to the presence of eNOS +894 G > T and eNOS −786 T > C variants that make an individual more susceptible to endothelial dysfunction. A number of genotyping methods have been developed to investigate these variants. However, simultaneous detection methods using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis are still lacking. In this study, a novel multiplex PCR-RFLP method for the simultaneous detection of MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants was developed. A total of 114 healthy Malay subjects were recruited. The MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants were genotyped using the novel multiplex PCR-RFLP and confirmed by DNA sequencing as well as snpBLAST. Allele frequencies of MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C were calculated using the Hardy Weinberg equation. Methods The 114 healthy volunteers were recruited for this study, and their DNA was extracted. Primer pair was designed using Primer 3 Software version 0.4.0 and validated against the BLAST database. The primer specificity, functionality and annealing temperature were tested using uniplex PCR methods that were later combined into a single multiplex PCR. Restriction Fragment Length Polymorphism (RFLP) was performed in three separate tubes followed by agarose gel electrophoresis. PCR product residual was purified and sent for DNA sequencing. Results The allele frequencies for MTHFR 677 C > T were 0.89 (C allele) and 0.11 (T allele); for eNOS +894 G > T, the allele frequencies were 0.58 (G allele) and 0.43 (T allele); and for eNOS −786 T > C, the allele frequencies were 0.87 (T allele) and 0.13 (C allele). Conclusions Our PCR-RFLP method is a simple, cost-effective and time-saving method. It can be used to successfully genotype subjects for the MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants simultaneously with 100% concordance from DNA sequencing data. This method can be routinely used for rapid investigation of the MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genomic DNA obtained from patient whole blood samples is a key element for genomic research. Advantages and disadvantages, in terms of time-efficiency, cost-effectiveness and laboratory requirements, of procedures available to isolate nucleic acids need to be considered before choosing any particular method. These characteristics have not been fully evaluated for some laboratory techniques, such as the salting out method for DNA extraction, which has been excluded from comparison in different studies published to date. We compared three different protocols (a traditional salting out method, a modified salting out method and a commercially available kit method) to determine the most cost-effective and time-efficient method to extract DNA. We extracted genomic DNA from whole blood samples obtained from breast cancer patient volunteers and compared the results of the product obtained in terms of quantity (concentration of DNA extracted and DNA obtained per ml of blood used) and quality (260/280 ratio and polymerase chain reaction product amplification) of the obtained yield. On average, all three methods showed no statistically significant differences between the final result, but when we accounted for time and cost derived for each method, they showed very significant differences. The modified salting out method resulted in a seven- and twofold reduction in cost compared to the commercial kit and traditional salting out method, respectively and reduced time from 3 days to 1 hour compared to the traditional salting out method. This highlights a modified salting out method as a suitable choice to be used in laboratories and research centres, particularly when dealing with a large number of samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a neurological disorder that is associated with increased levels of calcitonin gene-related peptide (CGRP) in plasma. CGRP, being one of the mediators of neurogenic inflammation and a phenomenon implicated in the pathogenesis of migraine headache, is thus suggested to have an important role in migraine pathophysiology. Polymorphisms of the CALCA gene have been linked to Parkinson's disease, ovarian cancer and essential hypertension, suggesting a functional role for these polymorphisms. Given the strong evidence linking CGRP and migraine, it is hypothesised that polymorphisms in the CALCA gene may play a role in migraine pathogenesis. Seemingly non functional intronic polymorphisms are capable of disrupting normal RNA processing or introducing a splice site in the transcript. A 16 bp deletion in the first intron of the CALCA gene has been reported to be a good match for the binding site for a transcription factor expressed strongly in neural crest derived cells, AP-2. This deletion also eliminates an intron splicing enhancer (ISE) that may potentially cause exon skipping. This study investigated the role of the 16 bp intronic deletion in the CALCA gene in migraineurs and matched control individuals. Six hundred individuals were genotyped for the deletion by polymerase chain reaction followed by fragment analysis on the 3130 Genetic Analyser. The results of this study showed no significant association between the intronic 16 bp deletion in the CALCA gene and migraine in the tested Australian Caucasian population. However, given the evidence linking CGRP and migraine, further investigation of variants with this gene may be warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To evaluate relative telomere length of female migraine patients. Background Migraine is a debilitating disorder affecting 6-28% of the population. Studies on the mechanisms of migraine have demonstrated genetic causes but the pathophysiology and subcellular effects of the disease remain poorly understood. Shortened telomere length is associated with age-related or chronic diseases, and induced stresses. Migraine attacks may impart significant stress on cellular function, thus this study investigates a correlation between shortening of telomeres and migraine. Methods Relative telomere length was measured using a previously described quantitative polymerase chain reaction method. A regression analysis was performed to assess differences in mean relative telomere length between migraine patients and healthy controls. Results The leukocyte telomeres of a cohort of 142 Caucasian female migraine subjects aged 18-77 years and 143 matched 17-77-year-old healthy control Caucasian women were examined.A significantly shorter relative telomere length was observed in the migraine group compared with the control group after adjusting for age and body mass index (P = .001). In addition, age of onset was observed to associate with the loss of relative telomere length, especially at early age of onset (<17 years old). No association was observed between relative telomere length and the severity and frequency of migraine attacks and the duration of migraine. Conclusion Telomeres are shorter in migraine patients and there is more variation in telomere length in migraine patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Members of the matrix metalloproteinase (MMP) family of proteases are required for the degradation of the basement membrane and extracellular matrix in both normal and pathological conditions. In vitro, MT1-MMP (MMP-14, membrane type-1-MMP) expression is higher in more invasive human breast cancer (HBC) cell lines, whilst in vivo its expression has been associated with the stroma surrounding breast tumours. MMP-1 (interstitial collagenase) has been associated with MDA-MB-231 invasion in vitro, while MMP-3 (stromelysin-1) has been localised around invasive cells of breast tumours in vivo. As MMPs are not stored intracellularly, the ability to localise their expression to their cells of origin is difficult. Methods We utilised the unique in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) methodology to localise the in vitro and in vivo gene expression of MT1-MMP, MMP-1 and MMP-3 in human breast cancer. In vitro, MMP induction was examined in the MDA-MB-231 and MCF-7 HBC cell lines following exposure to Concanavalin A (Con A). In vivo, we examined their expression in archival paraffin embedded xenografts derived from a range of HBC cell lines of varied invasive and metastatic potential. Mouse xenografts are heterogenous, containing neoplastic human parenchyma with mouse stroma and vasculature and provide a reproducible in vivo model system correlated to the human disease state. Results In vitro, exposure to Con A increased MT1-MMP gene expression in MDA-MB-231 cells and decreased MT1-MMP gene expression in MCF-7 cells. MMP-1 and MMP-3 gene expression remained unchanged in both cell lines. In vivo, stromal cells recruited into each xenograft demonstrated differences in localised levels of MMP gene expression. Specifically, MDA-MB-231, MDA-MB-435 and Hs578T HBC cell lines are able to influence MMP gene expression in the surrounding stroma. Conclusion We have demonstrated the applicability and sensitivity of IS-RT-PCR for the examination of MMP gene expression both in vitro and in vivo. Induction of MMP gene expression in both the epithelial tumour cells and surrounding stromal cells is associated with increased metastatic potential. Our data demonstrate the contribution of the stroma to epithelial MMP gene expression, and highlight the complexity of the role of MMPs in the stromal-epithelial interactions within breast carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In our laboratory, we have developed methods in real-time detection and quantitative-polymerase chain reaction (Q-PCR) to analyse the relative levels of gene expression in post mortem brain tissues. We have then applied this method to examine differences in gene activity between normal white matter (NWM) and plaque tissue from multiple sclerosis (MS) patients. Genes were selected based on their association with pathology and through identification by previously conducted global gene expression analysis. Plaque tissue was obtained from secondary progressive (SP) patients displaying chronic active, as well as acute pathologies; while NWM from the same location was obtained from age- and sex-matched controls (normal patients). In this study, we used both SYBR Green I supplementation and commercially available mixes to assess both comparative and absolute levels of gene activity. The results of both methods compared favourably for four of the five genes examined (P < 0.05, Pearsons), while differences in gene expression between chronic active and acute pathologies were also identified. For example, a >50-fold increase in osteopontin (Spp1) and inositol 1-4-5 phosphate 3 kinase B (Itpkb) levels in acute plaques contrasted with the 5-fold or less increase in chronic active plaques (P < 0.05, unpaired t test). By contrast, there was no significant difference in the levels of the MS marker and calcium-dependent protease (Calpain, Capns1) in MS plaque tissue. In summary, Q-PCR analysis using SYBR Green I has allowed us to economically obtain what may be clinically significant information from small amounts of the CNS, providing an opportunity for further clinical investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In our laboratory we have developed a quantitative-polymerase chain reaction (Q-PCR) strategy to examine the differential expression of adenosine receptor (ADOR), A(1), A(2A), A(2B) and A(3), and estrogen receptors (ER) alpha and beta. Brain and uterine mRNA were first used to optimise specific amplification conditions prior to SYBR Green I real time analysis of receptor subtype expression. SYBR Green I provided a convenient and sensitive means of examining specific PCR amplification product in real time, and allowed the generation of standard curves from which relative receptor abundance could be determined. Real time Q-PCR analysis was then performed, to examine changes in receptor expression levels in brains of adult female Wistar rats 3-month post ovariectomy. Comparison with sham-operated age-matched control rats demonstrated both comparative and absolute-copy number changes in receptor levels. Evaluation of both analytical methods investigated 18S rRNA as an internal reference for comparative gene expression analysis in the brain. The results of this study revealed preferential repression of ADORA(2A) (>4-fold down) and consistent (>2-fold) down-regulation of ADORA(1), ADORA(3), and ER-beta, following ovariectomy. No change was found in ADORA(2B) or ER-alpha. Analysis of absolute copy number in this study revealed a correlation between receptor expression in response to ovariectomy, and relative receptor subtype abundance in the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the role of the dopamine receptor genes, DRD1, DRD3, and DRD5 in the pathogenesis of migraine. BACKGROUND: Migraine is a chronic debilitating disorder affecting approximately 12% of the white population. The disease shows strong familial aggregation and presumably has a genetic basis, but at present, the type and number of genes involved is unclear. The study of candidate genes can prove useful in the identification of genes involved in complex diseases such as migraine, especially if the contribution of the gene to phenotypic expression is minor. Genes coding for proteins involved in dopamine metabolism have been implicated in a number of neurologic conditions and may play a contributory role in migraine. Hence, genes that code for enzymes and receptors modulating dopaminergic activity are good candidates for investigation of the molecular genetic basis of migraine. METHODS: We tested 275 migraineurs and 275 age- and sex-matched individuals free of migraine. Genotypic results were determined by restriction endonuclease digestion of polymerase chain reaction products to detect DRD1 and DRD3 alleles and by Genescan analysis after polymerase chain reaction using fluorescently labelled oligonucleotide primers for the DRD5 marker. RESULTS: Results of chi-square statistical analyses indicated that the allele distribution for migraine cases compared to controls was not significantly different for any of the three tested gene markers (chi2 = 0.1, P =.74 for DRD1; chi2 = 1.8, P =.18 for DRD3; and chi2 = 20.3, P =.08 for DRD5). CONCLUSIONS: These findings offer no evidence for allelic association between the tested dopamine receptor gene polymorphisms and the more prevalent forms of migraine and, therefore, do not support a role for these genes in the pathogenesis of the disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar keratoses affect approximately 50% of Australian Caucasians aged over 40 y. Solar keratoses can undergo malignant transformation into squamous cell carcinoma followed by possible metastasis and are risk factors for basal cell carcinoma, melanoma, and squamous cell carcinoma. The glutathione-S-transferase genes play a part in detoxification of carcinogens and mutagens, including some produced by ultraviolet radiation. This study examined the role of glutathione-S-transferase M1, T1, P1, and Z1 gene polymorphisms in susceptibility to solar keratoses development. Using DNA samples from volunteers involved in the Nambour Skin Cancer Prevention Trial, allele and genotype frequencies were determined using polymerase chain reaction and restriction enzyme digestion. No significant differences were detected in glutathione-S-transferase P1 and glutathione-S-transferase Z1 allele or genotype frequencies; however, a significant association between glutathione-S-transferase M1 genotypes and solar keratoses development was detected (p=0.003) with null individuals having an approximate 2-fold increase in risk for solar keratoses development (odds ratio: 2.1; confidence interval: 1.3-3.5) and a significantly higher increase in risk in conjunction with high outdoor exposure (odds ratio: 3.4; confidence interval: 1.9-6.3). Also, a difference in glutathione-S-transferase T1 genotype frequencies was detected (p=0.039), although considering that multiple testing was undertaken, this was found not to be significant. Fair skin and inability to tan were found to be highly significant risk factors for solar keratoses development with odds ratios of 18.5 (confidence interval: 5.7-59.9) and 7.4 (confidence interval: 2.6-21.0), respectively. Overall, glutathione-S-transferase M1 conferred a significant increase in risk of solar keratoses development, particularly in the presence of high outdoor exposure and synergistically with known phenotypic risk factors of fair skin and inability to tan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite reports confirming cell-cycle dependent gene expression and a number of studies describing specific circumstances in which β-actin is also regulated, the mRNA for β-actin remains a widely used housekeeping gene internal control. Utilizing differential reverse transcriptase-polymerase chain reaction (RT-PCR), we report here the dose-dependent inhibition of β-actin by matrigel. This was detected by comparison to the very moderate inhibition of the target gene, membrane type-1 matrix metalloproteinase (MT1-MMP), with results independently confirmed by similar findings on MT1-MMP expression using competitive RT-PCR. Furthermore, RT-PCR of the housekeeping gene 18 Svedberg Units (S) rRNA demonstrated excellent consistency, reproducibility and non-regulation by a matrigel treatment. We conclude that β-actin is highly regulated by matrigel and therefore unsuitable as an internal control in this treatment. Hence, these findings suggest that researchers have a responsibility to ensure that the housekeeping gene of choice is not regulated in their specific application, as such regulation may dramatically affect the accuracy of their results. This study reinforces the necessity for minimally regulated housekeeping genes such as 18S rRNA, and the superiority of competitive templates as internal controls for quantitative applications of RT-PCR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an attempt to define genomic copy number changes associated with the development of basal cell carcinoma, we investigated 15 sporadic tumors by comparative genomic hybridization. With the incorporation of tissue microdissection and degenerate oligonucleotide primed-polymerase chain reaction we were able to isolate, and then universally amplify, DNA from the tumor type. This combined approach allows the investigation of chromosomal imbalances within a histologically distinct region of tissue. Using comparative genomic hybridization we have observed novel and recurrent chromosomal gains at 6p (47%), 6q (20%), 9p (20%), 7 (13%), and X (13%). In addition comparative genomic hybridization revealed regional loss on 9q in 33% of tested tumors encompassing 9q22.3 to which the putative tumor suppressor gene, Patched, has been mapped. The deletion of Patched has been indicated in the development of hereditary and sporadic basal cell carcinomas. The identification of these recurrent genetic aberrations suggests that basal cell carcinomas may not be as genetically stable as previously thought. Further investigation of these regions may lead to the identification of other genes responsible for basal cell carcinoma formation.