49 resultados para POLYANILINE NANOFIBERS
Resumo:
Nanofibers of sodium vanadate, consisting of very thin negatively charged layers and exchangeable sodium ions between the layers, are efficient sorbents for the removal of radioactive 137Cs+ and 85Sr2+ cations from water. The exchange of 137Cs+ or 85Sr2+ ions with the interlayer Na+ ions eventually triggered structural deformation of the thin layers, trapping the 137Cs+ and 85Sr2+ ions in the nanofibers. Furthermore, when the nanofibers were dispersed in a AgNO3 solution at pH >7, well-dispersed Ag2O nanocrystals formed by firmly anchoring themselves on the fiber surfaces along planes of crystallographic similarity with those of Ag2O. These nanocrystals can efficiently capture I– anions by forming a AgI precipitate, which was firmly attached to the substrates. We also designed sorbents that can remove 137Cs+ and 125I– ions simultaneously for safe disposal by optimizing the Ag2O loading and sodium content of the vanadate. This study confirms that sorbent features such as fibril morphology, negatively charged thin layers and readily exchangeable Na+ ions between the layers, and the crystal planes for the formation of a coherent interface with Ag2O nanocrystals on the fiber surface are very important for the simultaneous uptake of cations and anions.
Resumo:
Topographical cues can be exploited to regulate stem cell attachment, proliferation, differentiation and function in vitro and in vivo. In this study, we aimed to investigate the influence of different nanofibrous topographies on the chondrogenic differentiation potential of nasal septum derived progenitors (NSP) in vitro. Aligned and randomly oriented Ploy (L-lactide) (PLLA)/Polycaprolactone (PCL) hybrid scaffolds were fabricated via electrospinning. First, scaffolds were fully characterized, and then NSP were seeded on them to study their capacity to support stem cell attachment, proliferation and chondrogenic differentiation. Compared to randomly oriented nanofibers, aligned scaffolds showed a high degree of nanofiber alignment with much better tensile strength properties. Both scaffolds supported NSP adhesion, proliferation and chondrogenic differentiation. Despite the higher rate of cell proliferation on random scaffolds, a better chondrogenic differentiation was observed on aligned nanofibers as deduced from higher expression of chondrogenic markers such as collagen type II and aggrecan on aligned scaffolds. These findings demonstrate that electrospun constructs maintain NSP proliferation and differentiation, and that the aligned nanofibrous scaffolds can significantly enhance chondrogenic differentiation of nasal septum derived progenitors
Resumo:
N-doped TiO2 nanofibres were observed to possess lower aerobic oxidation activity than undoped TiO2 nanofibres in the selective photocatalytic aerobic oxidation of enzylamine and 4-methoxybenzyl alcohol. This was attributed to the reduction free energy of O2 adsorption in the vicinity of nitrogen dopant sites, as indicated by density functional theory (DFT) calculations when three-coordinated oxygen atoms are substituted by nitrogen atoms. It was found that the activity recovered following a controlled calcination of the N-doped NFs in air. The dependence of the conversion of benzylamine and 4-methoxybenzyl alcohol on the intensity of light irradiation confirmed that these reactions were driven by light. Action spectra showed that the two oxidation reactions are responsive to light from the UV region through to the visible light irradiation range. The extended light absorption wavelength range in these systems compared to pure TiO2 materials was found to result from the formation of surface complex species following adsorption of reactants onto the catalysts' surface, evidenced by the in situ IR experiment. Both catalytic and in situ IR results reveal that benzaldehyde is the intermediate in the aerobic oxidation of benzylamine to N-benzylidenebenzylamine process.
Resumo:
One-dimensional nanomaterials have short Li+ diffusion paths and promising structural stability, which results in a long cycle life during Li+ insertion and extraction processes in lithium rechargeable batteries. In this study, we fabricated one-dimensional spinel Li 4Ti5O12 (LTO) nanofibers using an electrospinning technique and studied the Zr4+ doping effect on the lattice, electronic structure, and resultant electrochemical properties of Li-ion batteries (LIBs). Accommodating a small fraction of Zr4+ ions in the Ti4+ sites of the LTO structure gave rise to enhanced LIB performance, which was due to structural distortion through an increase in the average lattice constant and thereby enlarged Li+ diffusion paths rather than changes to the electronic structure. Insulating ZrO2 nanoparticles present between the LTO grains due to the low Zr4+ solubility had a negative effect on the Li+ extraction capacity, however. These results could provide key design elements for LTO anodes based on atomic level insights that can pave the way to an optimal protocol to achieve particular functionalities. Distorted lattice: Zr4+ is doped into a 1 D spinel Li4Ti5O12 (LTO) nanostructure and the resulting electrochemical properties are explored through a combined theoretical and experimental investigation. The improved electrochemical performance resulting from incorporation of Zr4+ in the LTO is due to lattice distortion and, thereby, enlarged Li+ diffusion paths rather than to a change in the electronic structure.