333 resultados para Organic matrix


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential impacts of plantation forestry practices on soil organic carbon and Fe available to microorganisms were investigated in a subtropical coastal catchment. The impacts of harvesting or replanting were largely limited to the soil top layer (0–10 cm depth). The thirty-year-old Pinus plantation showed low soil moisture content (Wc) and relatively high levels of soil total organic carbon (TOC). Harvesting and replanting increased soil Wc but reduced TOC levels. Mean dissolved organic carbon (DOC) and microbial biomass carbon (MBC) increased in harvested or replanted soils, but such changes were not statistically significant (P > 0.05). Total dithionite-citrate and aqua regia-extractable Fe did not respond to forestry practices, but acid ammonium oxalate and pyrophosphate-extractable, bioavailable Fe decreased markedly after harvesting or replanting. Numbers of heterotrophic bacteria were significantly correlated with DOC levels (P < 0.05), whereas Fe-reducing bacteria and S-bacteria detected using laboratory cultivation techniques did not show strong correlation with either soil DOC or Fe content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil C decomposition is sensitive to changes in temperature, and even small increases in temperature may prompt large releases of C from soils. But much of what we know about soil C responses to global change is based on short-term incubation data and model output that implicitly assumes soil C pools are composed of organic matter fractions with uniform temperature sensitivities. In contrast, kinetic theory based on chemical reactions suggests that older, more-resistant C fractions may be more temperature sensitive. Recent research on the subject is inconclusive, indicating that the temperature sensitivity of labile soil organic matter (OM) decomposition could either be greater than, less than, or equivalent to that of resistant soil OM. We incubated soils at constant temperature to deplete them of labile soil OM and then successively assessed the CO2-C efflux in response to warming. We found that the decomposition response to experimental warming early during soil incubation (when more labile C remained) was less than that later when labile C was depleted. These results suggest that the temperature sensitivity of resistant soil OM pools is greater than that for labile soil OM and that global change-driven soil C losses may be greater than previously estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between organic matter (OM) lability and temperature sensitivity is disputed, with recent observations suggesting that responses of relatively more resistant OM to increased temperature could be greater than, equivalent to, or less than responses of relatively more labile OM. This lack of clear understanding limits the ability to forecast carbon (C) cycle responses to temperature changes. Here, we derive a novel approach (denoted Q(10-q)) that accounts for changes in OM quality during decomposition and use it to analyze data from three independent sources. Results from new laboratory soil incubations (labile Q(10-q)=2.1 +/- 0.2; more resistant Q(10-q)=3.8 +/- 0.3) and reanalysis of data from other soil incubations reported in the literature (labile Q(10-q)=2.3; more resistant Q(10-q)=3.3) demonstrate that temperature sensitivity of soil OM decomposition increases with decreasing soil OM lability. Analysis of data from a cross-site, field litter bag decomposition study (labile Q(10-q)=3.3 +/- 0.2; resistant Q(10-q)=4.9 +/- 0.2) shows that litter OM follows the same pattern, with greater temperature sensitivity for more resistant litter OM. Furthermore, the initial response of cultivated soils, presumably containing less labile soil OM (Q(10-q)=2.4 +/- 0.3) was greater than that for undisturbed grassland soils (Q(10-q)=1.7 +/- 0.1). Soil C losses estimated using this approach will differ from previous estimates as a function of the magnitude of the temperature increase and the proportion of whole soil OM comprised of compounds sensitive to temperature over that temperature range. It is likely that increased temperature has already prompted release of significant amounts of C to the atmosphere as CO2. Our results indicate that future losses of litter and soil C may be even greater than previously supposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural management affects soil organic matter, which is important for sustainable crop production and as a greenhouse gas sink. Our objective was to determine how tillage, residue management and N fertilization affect organic C in unprotected, and physically, chemically and biochemically protected soil C pools. Samples from Breton, Alberta were fractionated and analysed for organic C content. As in previous report, N fertilization had a positive effect, tillage had a minimal effect, and straw management had no effect on whole-soil organic C. Tillage and straw management did not alter organic C concentrations in the isolated C pools, while N fertilization increased C concentrations in all pools. Compared with a woodlot soil, the cultivated plots had lower total organic C, and the C was redistributed among isolated pools. The free light fraction and coarse particulate organic matter responded positively to C inputs, suggesting that much of the accumulated organic C occurred in an unprotected pool. The easily dispersed silt-sized fraction was the mineral-associated pool most responsive to changes in C inputs, whereas the microaggregate-derived silt-sized fraction best preserved C upon cultivation. These findings suggest that the silt-sized fraction is important for the long-term stabilization of organic matter through both physical occlusion in microaggregates and chemical protection by mineral association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt- and clay-sized soil fractions. Microaggegrate-derived and easily dispersed silt- and clay-sized fractions were isolated from surface soil samples collected from six long-term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non-hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no-till > conventional-till at all sites. Concentrations of non-hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt-sized fractions compared with the clay-sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature was reviewed and analyzed to determine the feasibility of using a combination of acid hydrolysis and CO2-C release during long-term incubation to determine soil organic carbon (SOC) pool sizes and mean residence times (MRTs). Analysis of 1100 data points showed the SOC remaining after hydrolysis with 6 M HCI ranged from 30 to 80% of the total SOC depending on soil type, depth, texture, and management. Nonhydrolyzable carbon (NHC) in conventional till soils represented 48% of SOC; no-till averaged 56%, forest 55%, and grassland 56%. Carbon dates showed an average of 1200 yr greater MRT for the NHC fraction than total SOC. Longterm incubation, involving measurement of CO2 evolution and curve fitting, measured active and slow pools. Active-pool C comprised 2 to 8% of the SOC with MRTs of days to months; the slow pool comprised 45 to 65% of the SOC and had MRTs of 10 to 80 yr. Comparison of field C-14 and (13) C data with hydrolysis-incubation data showed a high correlation between independent techniques across soil types and experiments. There were large differences in MRTs depending on the length of the experiment. Insertion of hydrolysis-incubation derived estimates of active (C-a), slow (C-s), and resistant Pools (C-r) into the DAYCENT model provided estimates of daily field CO2 evolution rates. These were well correlated with field CO2 measurements. Although not without some interpretation problems, acid hydrolysis-laboratory incubation is useful for determining SOC pools and fluxes especially when used in combination with associated measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research on the protection of soil organic C from decomposition suggests that soil texture affects soil C stocks. However, different pools of soil organic matter (SOM) might be differently related to soil texture. Our objective was to examine how soil texture differentially alters the distribution of organic C within physically and chemically defined pools of unprotected and protected SOM. We collected samples from two soil texture gradients where other variables influencing soil organic C content were held constant. One texture gradient (16-60% clay) was located near Stewart Valley, Saskatchewan, Canada and the other (25-50% clay) near Cygnet, OH. Soils were physically fractionated into coarse- and fine-particulate organic matter (POM), silt- and clay-sized particles within microaggregates, and easily dispersed silt-and clay-sized particles outside of microaggregates. Whole-soil organic C concentration was positively related to silt plus clay content at both sites. We found no relationship between soil texture and unprotected C (coarse- and fine-POM C). Biochemically protected C (nonhydrolyzable C) increased with increasing clay content in whole-soil samples, but the proportion of nonhydrolyzable C within silt- and clay-sized fractions was unchanged. As the amount of silt or clay increased, the amount of C stabilized within easily dispersed and microaggregate-associated silt or clay fractions decreased. Our results suggest that for a given level of C inputs, the relationship between mineral surface area and soil organic matter varies with soil texture for physically and biochemically protected C fractions. Because soil texture acts directly and indirectly on various protection mechanisms, it may not be a universal predictor of whole-soil C content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between soil structure and the ability of soil to stabilize soil organic matter (SOM) is a key element in soil C dynamics that has either been overlooked or treated in a cursory fashion when developing SOM models. The purpose of this paper is to review current knowledge of SOM dynamics within the framework of a newly proposed soil C saturation concept. Initially, we distinguish SOM that is protected against decomposition by various mechanisms from that which is not protected from decomposition. Methods of quantification and characteristics of three SOM pools defined as protected are discussed. Soil organic matter can be: (1) physically stabilized, or protected from decomposition, through microaggregation, or (2) intimate association with silt and clay particles, and (3) can be biochemically stabilized through the formation of recalcitrant SOM compounds. In addition to behavior of each SOM pool, we discuss implications of changes in land management on processes by which SOM compounds undergo protection and release. The characteristics and responses to changes in land use or land management are described for the light fraction (LF) and particulate organic matter (POM). We defined the LF and POM not occluded within microaggregates (53-250 mum sized aggregates as unprotected. Our conclusions are illustrated in a new conceptual SOM model that differs from most SOM models in that the model state variables are measurable SOM pools. We suggest that physicochemical characteristics inherent to soils define the maximum protective capacity of these pools, which limits increases in SOM (i.e. C sequestration) with increased organic residue inputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive data used to quantify broad soil C changes (without information about causation), coupled with intensive data used for attribution of changes to specific management practices, could form the basis of an efficient national grassland soil C monitoring network. Based on variability of extensive (USDA/NRCS pedon database) and intensive field-level soil C data, we evaluated the efficacy of future sample collection to detect changes in soil C in grasslands. Potential soil C changes at a range of spatial scales related to changes in grassland management can be verified (alpha=0.1) after 5 years with collection of 34, 224, 501 samples at the county, state, or national scales, respectively. Farm-level analysis indicates that equivalent numbers of cores and distinct groups of cores (microplots) results in lowest soil C coefficients of variation for a variety of ecosystems. Our results suggest that grassland soil C changes can be precisely quantified using current technology at scales ranging from farms to the entire nation. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of biogenic particle formation on climate is a well recognised phenomenon. To understand the mechanisms underlying the biogenic particle formation, determining the chemical composition of the new particles and therefore the species that drive the particle production is of utmost importance. Due to the very small amount of mass involved, indirect approaches are frequently used to infer the composition. We present here the results of such an indirect approach by simultaneously measuring volatile and hygroscopic properties of newly formed particles in a forest environment. It is shown that the particles are composed of both sulphates and organics, with the amount of sulphate component strongly depending on the available gas-phase sulphuric acid, and the organic components having the same volatility and hygroscopicity as photooxidation products of a monoterpene such as α-pinene. Our findings agree with a two-step process through nucleation and cluster formation followed by simultaneous growth by condensation of sulphates and organics that take the particles to climatically relevant sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have detected a dominant accumulation mode (~100 nm) in the Sea Spray Aerosol (SSA) number distribution. There is evidence to suggest that particles in this mode are composed primarily of organics. To investigate this hypothesis we conducted experiments on NaCl, artificial SSA and natural SSA particles with a Volatility-Hygroscopicity-Tandem-Differential-Mobility-Analyser (VH-TDMA). NaCl particles were atomiser generated and a bubble generator was constructed to produce artificial and natural SSA particles. Natural seawater samples for use in the bubble generator were collected from biologically active, terrestrially-affected coastal water in Moreton Bay, Australia. Differences in the VH-TDMA-measured volatility curves of artificial and natural SSA particles were used to investigate and quantify the organic fraction of natural SSA particles. Hygroscopic Growth Factor (HGF) data, also obtained by the VH-TDMA, were used to confirm the conclusions drawn from the volatility data. Both datasets indicated that the organic fraction of our natural SSA particles evaporated in the VH-TDMA over the temperature range 170–200°C. The organic volume fraction for 71–77 nm natural SSA particles was 8±6%. Organic volume fraction did not vary significantly with varying water residence time (40 secs to 24 hrs) in the bubble generator or SSA particle diameter in the range 38–173 nm. At room temperature we measured shape- and Kelvin-corrected HGF at 90% RH of 2.46±0.02 for NaCl, 2.35±0.02 for artifical SSA and 2.26±0.02 for natural SSA particles. Overall, these results suggest that the natural accumulation mode SSA particles produced in these experiments contained only a minor organic fraction, which had little effect on hygroscopic growth. Our measurement of 8±6% is an order of magnitude below two previous measurements of the organic fraction in SSA particles of comparable sizes. We stress that our results were obtained using coastal seawater and they can’t necessarily be applied on a regional or global ocean scale. Nevertheless, considering the order of magnitude discrepancy between this and previous studies, further research with independent measurement techniques and a variety of different seawaters is required to better quantify how much organic material is present in accumulation mode SSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The link between measured sub-saturated hygroscopicity and cloud activation potential of secondary organic aerosol particles produced by the chamber photo-oxidation of α-pinene in the presence or absence of ammonium sulphate seed aerosol was investigated using two models of varying complexity. A simple single hygroscopicity parameter model and a more complex model (incorporating surface effects) were used to assess the detail required to predict the cloud condensation nucleus (CCN) activity from the subsaturated water uptake. Sub-saturated water uptake measured by three hygroscopicity tandem differential mobility analyser (HTDMA) instruments was used to determine the water activity for use in the models. The predicted CCN activity was compared to the measured CCN activation potential using a continuous flow CCN counter. Reconciliation using the more complex model formulation with measured cloud activation could be achieved widely different assumed surface tension behavior of the growing droplet; this was entirely determined by the instrument used as the source of water activity data. This unreliable derivation of the water activity as a function of solute concentration from sub-saturated hygroscopicity data indicates a limitation in the use of such data in predicting cloud condensation nucleus behavior of particles with a significant organic fraction. Similarly, the ability of the simpler single parameter model to predict cloud activation behaviour was dependent on the instrument used to measure sub-saturated hygroscopicity and the relative humidity used to provide the model input. However, agreement was observed for inorganic salt solution particles, which were measured by all instruments in agreement with theory. The difference in HTDMA data from validated and extensively used instruments means that it cannot be stated with certainty the detail required to predict the CCN activity from sub-saturated hygroscopicity. In order to narrow the gap between measurements of hygroscopic growth and CCN activity the processes involved must be understood and the instrumentation extensively quality assured. It is impossible to say from the results presented here due to the differences in HTDMA data whether: i) Surface tension suppression occurs ii) Bulk to surface partitioning is important iii) The water activity coefficient changes significantly as a function of the solute concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This overview focuses on the application of chemometrics techniques for the investigation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs) and metals because these two important and very diverse groups of pollutants are ubiquitous in soils. The salient features of various studies carried out in the micro- and recreational environments of humans, are highlighted in the context of the various multivariate statistical techniques available across discipline boundaries that have been effectively used in soil studies. Particular attention is paid to techniques employed in the geosciences that may be effectively utilized for environmental soil studies; classical multivariate approaches that may be used in isolation or as complementary methods to these are also discussed. Chemometrics techniques widely applied in atmospheric studies for identifying sources of pollutants or for determining the importance of contaminant source contributions to a particular site, have seen little use in soil studies, but may be effectively employed in such investigations. Suitable programs are also available for suggesting mitigating measures in cases of soil contamination, and these are also considered. Specific techniques reviewed include pattern recognition techniques such as Principal Components Analysis (PCA), Fuzzy Clustering (FC) and Cluster Analysis (CA); geostatistical tools include variograms, Geographical Information Systems (GIS), contour mapping and kriging; source identification and contribution estimation methods reviewed include Positive Matrix Factorisation (PMF), and Principal Component Analysis on Absolute Principal Component Scores (PCA/APCS). Mitigating measures to limit or eliminate pollutant sources may be suggested through the use of ranking analysis and multi criteria decision making methods (MCDM). These methods are mainly represented in this review by studies employing the Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and its associated graphic output, Geometrical Analysis for Interactive Aid (GAIA).