122 resultados para Open Data, Dati Aperti, Open Government Data
Resumo:
Background: Efforts to prevent the development of overweight and obesity have increasingly focused early in the life course as we recognise that both metabolic and behavioural patterns are often established within the first few years of life. Randomised controlled trials (RCTs) of interventions are even more powerful when, with forethought, they are synthesised into an individual patient data (IPD) prospective meta-analysis (PMA). An IPD PMA is a unique research design where several trials are identified for inclusion in an analysis before any of the individual trial results become known and the data are provided for each randomised patient. This methodology minimises the publication and selection bias often associated with a retrospective meta-analysis by allowing hypotheses, analysis methods and selection criteria to be specified a priori. Methods/Design: The Early Prevention of Obesity in CHildren (EPOCH) Collaboration was formed in 2009. The main objective of the EPOCH Collaboration is to determine if early intervention for childhood obesity impacts on body mass index (BMI) z scores at age 18-24 months. Additional research questions will focus on whether early intervention has an impact on children’s dietary quality, TV viewing time, duration of breastfeeding and parenting styles. This protocol includes the hypotheses, inclusion criteria and outcome measures to be used in the IPD PMA. The sample size of the combined dataset at final outcome assessment (approximately 1800 infants) will allow greater precision when exploring differences in the effect of early intervention with respect to pre-specified participant- and intervention-level characteristics. Discussion: Finalisation of the data collection procedures and analysis plans will be complete by the end of 2010. Data collection and analysis will occur during 2011-2012 and results should be available by 2013. Trial registration number: ACTRN12610000789066
Resumo:
Background: International data on child maltreatment are largely derived from child protection agencies, and predominantly report only substantiated cases of child maltreatment. This approach underestimates the incidence of maltreatment and makes inter-jurisdictional comparisons difficult. There has been a growing recognition of the importance of health professionals in identifying, documenting and reporting suspected child maltreatment. This study aimed to describe the issues around case identification using coded morbidity data, outline methods for selecting and grouping relevant codes, and illustrate patterns of maltreatment identified. Methods: A comprehensive review of the ICD-10-AM classification system was undertaken, including review of index terms, a free text search of tabular volumes, and a review of coding standards pertaining to child maltreatment coding. Identified codes were further categorised into maltreatment types including physical abuse, sexual abuse, emotional or psychological abuse, and neglect. Using these code groupings, one year of Australian hospitalisation data for children under 18 years of age was examined to quantify the proportion of patients identified and to explore the characteristics of cases assigned maltreatment-related codes. Results: Less than 0.5% of children hospitalised in Australia between 2005 and 2006 had a maltreatment code assigned, almost 4% of children with a principal diagnosis of a mental and behavioural disorder and over 1% of children with an injury or poisoning as the principal diagnosis had a maltreatment code assigned. The patterns of children assigned with definitive T74 codes varied by sex and age group. For males selected as having a maltreatment-related presentation, physical abuse was most commonly coded (62.6% of maltreatment cases) while for females selected as having a maltreatment-related presentation, sexual abuse was the most commonly assigned form of maltreatment (52.9% of maltreatment cases). Conclusion: This study has demonstrated that hospital data could provide valuable information for routine monitoring and surveillance of child maltreatment, even in the absence of population-based linked data sources. With national and international calls for a public health response to child maltreatment, better understanding of, investment in and utilisation of our core national routinely collected data sources will enhance the evidence-base needed to support an appropriate response to children at risk.
Resumo:
Background: Internationally, research on child maltreatment-related injuries has been hampered by a lack of available routinely collected health data to identify cases, examine causes, identify risk factors and explore health outcomes. Routinely collected hospital separation data coded using the International Classification of Diseases and Related Health Problems (ICD) system provide an internationally standardised data source for classifying and aggregating diseases, injuries, causes of injuries and related health conditions for statistical purposes. However, there has been limited research to examine the reliability of these data for child maltreatment surveillance purposes. This study examined the reliability of coding of child maltreatment in Queensland, Australia. Methods: A retrospective medical record review and recoding methodology was used to assess the reliability of coding of child maltreatment. A stratified sample of hospitals across Queensland was selected for this study, and a stratified random sample of cases was selected from within those hospitals. Results: In 3.6% of cases the coders disagreed on whether any maltreatment code could be assigned (definite or possible) versus no maltreatment being assigned (unintentional injury), giving a sensitivity of 0.982 and specificity of 0.948. The review of these cases where discrepancies existed revealed that all cases had some indications of risk documented in the records. 15.5% of cases originally assigned a definite or possible maltreatment code, were recoded to a more or less definite strata. In terms of the number and type of maltreatment codes assigned, the auditor assigned a greater number of maltreatment types based on the medical documentation than the original coder assigned (22% of the auditor coded cases had more than one maltreatment type assigned compared to only 6% of the original coded data). The maltreatment types which were the most ‘under-coded’ by the original coder were psychological abuse and neglect. Cases coded with a sexual abuse code showed the highest level of reliability. Conclusion: Given the increasing international attention being given to improving the uniformity of reporting of child-maltreatment related injuries and the emphasis on the better utilisation of routinely collected health data, this study provides an estimate of the reliability of maltreatment-specific ICD-10-AM codes assigned in an inpatient setting.
Resumo:
Open-source software systems have become a viable alternative to proprietary systems. We collected data on the usage of an open-source workflow management system developed by a university research group, and examined this data with a focus on how three different user cohorts – students, academics and industry professionals – develop behavioral intentions to use the system. Building upon a framework of motivational components, we examined the group differences in extrinsic versus intrinsic motivations on continued usage intentions. Our study provides a detailed understanding of the use of open-source workflow management systems in different user communities. Moreover, it discusses implications for the provision of workflow management systems, the user-specific management of open-source systems and the development of services in the wider user community.
Resumo:
This paper describes modelling, estimation and control of the horizontal translational motion of an open-source and cost effective quadcopter — the MikroKopter. We determine the dynamics of its roll and pitch attitude controller, system latencies, and the units associated with the values exchanged with the vehicle over its serial port. Using this we create a horizontal-plane velocity estimator that uses data from the built-in inertial sensors and an onboard laser scanner, and implement translational control using a nested control loop architecture. We present experimental results for the model and estimator, as well as closed-loop positioning.
Resumo:
During the course of several natural disasters in recent years, Twitter has been found to play an important role as an additional medium for many–to–many crisis communication. Emergency services are successfully using Twitter to inform the public about current developments, and are increasingly also attempting to source first–hand situational information from Twitter feeds (such as relevant hashtags). The further study of the uses of Twitter during natural disasters relies on the development of flexible and reliable research infrastructure for tracking and analysing Twitter feeds at scale and in close to real time, however. This article outlines two approaches to the development of such infrastructure: one which builds on the readily available open source platform yourTwapperkeeper to provide a low–cost, simple, and basic solution; and, one which establishes a more powerful and flexible framework by drawing on highly scaleable, state–of–the–art technology.
Resumo:
This paper describes system identification, estimation and control of translational motion and heading angle for a cost effective open-source quadcopter — the MikroKopter. The dynamics of its built-in sensors, roll and pitch attitude controller, and system latencies are determined and used to design a computationally inexpensive multi-rate velocity estimator that fuses data from the built-in inertial sensors and a low-rate onboard laser range finder. Control is performed using a nested loop structure that is also computationally inexpensive and incorporates different sensors. Experimental results for the estimator and closed-loop positioning are presented and compared with ground truth from a motion capture system.
Resumo:
Background: Kallikrein 15 (KLK15)/Prostinogen is a plausible candidate for prostate cancer susceptibility. Elevated KLK15 expression has been reported in prostate cancer and it has been described as an unfavorable prognostic marker for the disease. Objectives: We performed a comprehensive analysis of association of variants in the KLK15 gene with prostate cancer risk and aggressiveness by genotyping tagSNPs, as well as putative functional SNPs identified by extensive bioinformatics analysis. Methods and Data Sources: Twelve out of 22 SNPs, selected on the basis of linkage disequilibrium pattern, were analyzed in an Australian sample of 1,011 histologically verified prostate cancer cases and 1,405 ethnically matched controls. Replication was sought from two existing genome wide association studies (GWAS): the Cancer Genetic Markers of Susceptibility (CGEMS) project and a UK GWAS study. Results: Two KLK15 SNPs, rs2659053 and rs3745522, showed evidence of association (p, 0.05) but were not present on the GWAS platforms. KLK15 SNP rs2659056 was found to be associated with prostate cancer aggressiveness and showed evidence of association in a replication cohort of 5,051 patients from the UK, Australia, and the CGEMS dataset of US samples. A highly significant association with Gleason score was observed when the data was combined from these three studies with an Odds Ratio (OR) of 0.85 (95% CI = 0.77-0.93; p = 2.7610 24). The rs2659056 SNP is predicted to alter binding of the RORalpha transcription factor, which has a role in the control of cell growth and differentiation and has been suggested to control the metastatic behavior of prostate cancer cells. Conclusions: Our findings suggest a role for KLK15 genetic variation in the etiology of prostate cancer among men of European ancestry, although further studies in very large sample sets are necessary to confirm effect sizes.
Resumo:
The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems.
Resumo:
Advances in information and communication technologies have brought about an information revolution, leading to fundamental changes in the way that information is collected or generated, shared and distributed. The importance of establishing systems in which research findings can be readily made available to and used by other researchers has long been recognized in international scientific collaborations. If the data access principles adopted by international scientific collaborations are to be effectively implemented they must be supported by the national policies and laws in place in the countries in which participating researchers are operating.
Resumo:
While undertaking the ANDS RDA Gold Standard Record Exemplars project, research data sharing was discussed with many QUT researchers. Our experiences provided rich insight into researcher attitudes towards their data and the sharing of such data. Generally, we found traditional altruistic motivations for research data sharing did not inspire researchers, but an explanation of the more achievement-oriented benefits were more compelling.
Resumo:
The Queensland University of Technology (QUT) in Brisbane, Australia, is involved in a number of projects funded by the Australian National Data Service (ANDS). Currently, QUT is working on a project (Metadata Stores Project) that uses open source VIVO software to aid in the storage and management of metadata relating to data sets created/managed by the QUT research community. The registry (called QUT Research Data Finder) will support the sharing and reuse of research datasets, within and external to QUT. QUT uses VIVO for both the display and the editing of research metadata.
Resumo:
Members of the World Trade Organisation (WTO) are obliged to implement the Agreement on Trade-related Intellectual Property Rights 1994 (TRIPS) which establishes minimum standards for the protection and enforcement of intellectual property rights. Almost two decades after TRIPS was adopted at the conclusion of the Uruguay Round of trade negotiations, it is widely accepted that intellectual property systems in developing and least-developed countries must be consistent with, and serve, their development needs and objectives. In adopting the Development Agenda in 2007, the World Intellectual Property Organisation (WIPO) emphasised the importance to developing and least-developed countries of being able to obtain access to knowledge and technology and to participate in collaborations and exchanges with research and scientific institutions in other countries. Access to knowledge, information and technology is crucial if creativity and innovation is to be fostered in developing and least-developed countries. It is particularly important that developing and least-developed countries give effect to their TRIPS obligations by implementing intellectual property systems and adopting intellectual property management practices that enable them to benefit from knowledge flows and support their engagement in international research and science collaborations. However, developing and least-developed countries did not participate in the deliberations leading to the adoption in 2004 by Organisation for Economic Co-operation and Development (OECD) member countries of the Ministerial Declaration on Access to Research Data from Public Funding, nor have they formulated policies on access to publicly funded research outputs such as those developed by the National Institutes of Health in the United States, the United Kingdom Research Councils or the Australian National Health and Medical Research Council. These issues are considered from the viewpoint of Malaysia, a developing country whose economy has grown strongly in recent years. Lacking an established policy covering access to the outputs of publicly funded research, data sharing and licensing practices continue to be fragmented. Obtaining access to research data requires arrangements to be negotiated with individual data owners and custodians. Given the potential for restrictions on access to impact negatively on scientific progress and development in Malaysia, measures are required to ensure that access to knowledge and research results is facilitated. This paper proposes a policy framework for Malaysia‘s public research universities that recognises intellectual property rights while enabling the open access to research data that is essential for innovation and development. It also considers how intellectual property rights in research data can be managed in order to give effect to the policy‘s open access objectives.
Resumo:
High Dynamic Range (HDR) imaging was used to collect luminance information at workstations in 2 open-plan office buildings in Queensland, Australia: one lit by skylights, vertical windows and electric light, and another by skylights and electric light. This paper compares illuminance and luminance data collected in these offices with occupant feedback to evaluate these open-plan environments based on available and emerging metrics for visual comfort and glare. This study highlights issues of daylighting quality and measurement specific to open plan spaces. The results demonstrate that overhead glare is a serious threat to user acceptance of skylights, and that electric and daylight integration and controls have a major impact on the perception of daylighting quality. With regards to measurement of visual comfort it was found that the Daylight Glare Probability (DGP) gave poor agreement with occupant reports of discomfort glare in open-plan spaces with skylights, and the CIE Glare Index (CGI) gave the best agreement. Horizontal and vertical illuminances gave no indication of visual comfort in these spaces.