150 resultados para OPTIMAL CONTROL
Resumo:
This paper serves as a first study on the implementation of control strategies developed using a kinematic reduction onto test bed autonomous underwater vehicles (AUVs). The equations of motion are presented in the framework of differential geometry, including external dissipative forces, as a forced affine connection control system. We show that the hydrodynamic drag forces can be included in the affine connection, resulting in an affine connection control system. The definitions of kinematic reduction and decoupling vector field are thus extended from the ideal fluid scenario. Control strategies are computed using this new extension and are reformulated for implementation onto a test-bed AUV. We compare these geometrically computed controls to time and energy optimal controls for the same trajectory which are computed using a previously developed algorithm. Through this comparison we are able to validate our theoretical results based on the experiments conducted using the time and energy efficient strategies.
Resumo:
Traffic safety in rural highways can be considered as a constant source of concern in many countries. Nowadays, transportation professionals widely use Intelligent Transportation Systems (ITS) to address safety issues. However, compared to metropolitan applications, the rural highway (non-urban) ITS applications are still not well defined. This paper provides a comprehensive review on the existing ITS safety solutions for rural highways. This research is mainly focused on the infrastructure-based control and surveillance ITS technology, such as Crash Prevention and Safety, Road Weather Management and other applications, that is directly related to the reduction of frequency and severity of accidents. The main outcome of this research is the development of a ‘ITS control and surveillance device locating model’ to achieve the maximum safety benefit for rural highways. Using cost and benefits databases of ITS, an integer linear programming method is utilized as an optimization technique to choose the most suitable set of ITS devices. Finally, computational analysis is performed on an existing highway in Iran, to validate the effectiveness of the proposed locating model.
Resumo:
The gastrointestinal tract plays an important role in the improved appetite control and weight loss in response to bariatric surgery. Other strategies which similarly alter gastrointestinal responses to food intake could contribute to successful weight management. The aim of this review is to discuss the effects of surgical, pharmacological and behavioural weight loss interventions on gastrointestinal targets of appetite control, including gastric emptying. Gastrointestinal peptides are also discussed because of their integrative relationship in appetite control. This review shows that different strategies exert diverse effects and there is no consensus on the optimal strategy for manipulating gastric emptying to improve appetite control. Emerging evidence from surgical procedures (e.g., sleeve gastrectomy and Roux en-Y gastric bypass) suggests a faster emptying rate and earlier delivery of nutrients to the distal small intestine may improve appetite control. Energy restriction slows gastric emptying, while the effect of exercise-induced weight loss on gastric emptying remains to be established. The limited evidence suggests that chronic exercise is associated with faster gastric emptying which we hypothesise will impact on appetite control and energy balance. Understanding how behavioural weight loss interventions (e.g., diet and exercise) alter gastrointestinal targets of appetite control may be important to improve their success in weight management.
Resumo:
This paper proposes a comprehensive approach to the planning of distribution networks and the control of microgrids. Firstly, a Modified Discrete Particle Swarm Optimization (MDPSO) method is used to optimally plan a distribution system upgrade over a 20 year planning period. The optimization is conducted at different load levels according to the anticipated load duration curve and integrated over the system lifetime in order to minimize its total lifetime cost. Since the optimal solution contains Distributed Generators (DGs) to maximize reliability, the DG must be able to operate in islanded mode and this leads to the concept of microgrids. Thus the second part of the paper reviews some of the challenges of microgrid control in the presence of both inertial (rotating direct connected) and non-inertial (converter interfaced) DGs. More specifically enhanced control strategies based on frequency droop are proposed for DGs to improve the smooth synchronization and real power sharing minimizing transient oscillations in the microgrid. Simulation studies are presented to show the effectiveness of the control.
Resumo:
A forced landing is an unscheduled event in flight requiring an emergency landing, and is most commonly attributed to engine failure, failure of avionics or adverse weather. Since the ability to conduct a successful forced landing is the primary indicator for safety in the aviation industry, automating this capability for unmanned aerial vehicles (UAVs) will help facilitate their integration into, and subsequent routine operations over civilian airspace. Currently, there is no commercial system available to perform this task; however, a team at the Australian Research Centre for Aerospace Automation (ARCAA) is working towards developing such an automated forced landing system. This system, codenamed Flight Guardian, will operate onboard the aircraft and use machine vision for site identification, artificial intelligence for data assessment and evaluation, and path planning, guidance and control techniques to actualize the landing. This thesis focuses on research specific to the third category, and presents the design, testing and evaluation of a Trajectory Generation and Guidance System (TGGS) that navigates the aircraft to land at a chosen site, following an engine failure. Firstly, two algorithms are developed that adapts manned aircraft forced landing techniques to suit the UAV planning problem. Algorithm 1 allows the UAV to select a route (from a library) based on a fixed glide range and the ambient wind conditions, while Algorithm 2 uses a series of adjustable waypoints to cater for changing winds. A comparison of both algorithms in over 200 simulated forced landings found that using Algorithm 2, twice as many landings were within the designated area, with an average lateral miss distance of 200 m at the aimpoint. These results present a baseline for further refinements to the planning algorithms. A significant contribution is seen in the design of the 3-D Dubins Curves planning algorithm, which extends the elementary concepts underlying 2-D Dubins paths to account for powerless flight in three dimensions. This has also resulted in the development of new methods in testing for path traversability, in losing excess altitude, and in the actual path formation to ensure aircraft stability. Simulations using this algorithm have demonstrated lateral and vertical miss distances of under 20 m at the approach point, in wind speeds of up to 9 m/s. This is greater than a tenfold improvement on Algorithm 2 and emulates the performance of manned, powered aircraft. The lateral guidance algorithm originally developed by Park, Deyst, and How (2007) is enhanced to include wind information in the guidance logic. A simple assumption is also made that reduces the complexity of the algorithm in following a circular path, yet without sacrificing performance. Finally, a specific method of supplying the correct turning direction is also used. Simulations have shown that this new algorithm, named the Enhanced Nonlinear Guidance (ENG) algorithm, performs much better in changing winds, with cross-track errors at the approach point within 2 m, compared to over 10 m using Park's algorithm. A fourth contribution is made in designing the Flight Path Following Guidance (FPFG) algorithm, which uses path angle calculations and the MacCready theory to determine the optimal speed to fly in winds. This algorithm also uses proportional integral- derivative (PID) gain schedules to finely tune the tracking accuracies, and has demonstrated in simulation vertical miss distances of under 2 m in changing winds. A fifth contribution is made in designing the Modified Proportional Navigation (MPN) algorithm, which uses principles from proportional navigation and the ENG algorithm, as well as methods specifically its own, to calculate the required pitch to fly. This algorithm is robust to wind changes, and is easily adaptable to any aircraft type. Tracking accuracies obtained with this algorithm are also comparable to those obtained using the FPFG algorithm. For all three preceding guidance algorithms, a novel method utilising the geometric and time relationship between aircraft and path is also employed to ensure that the aircraft is still able to track the desired path to completion in strong winds, while remaining stabilised. Finally, a derived contribution is made in modifying the 3-D Dubins Curves algorithm to suit helicopter flight dynamics. This modification allows a helicopter to autonomously track both stationary and moving targets in flight, and is highly advantageous for applications such as traffic surveillance, police pursuit, security or payload delivery. Each of these achievements serves to enhance the on-board autonomy and safety of a UAV, which in turn will help facilitate the integration of UAVs into civilian airspace for a wider appreciation of the good that they can provide. The automated UAV forced landing planning and guidance strategies presented in this thesis will allow the progression of this technology from the design and developmental stages, through to a prototype system that can demonstrate its effectiveness to the UAV research and operations community.
Resumo:
Background: Bioimpedance techniques provide a reliable method of assessing unilateral lymphedema in a clinical setting. Bioimpedance devices are traditionally used to assess body composition at a current frequency of 50 kHz. However, these devices are not transferable to the assessment of lymphedema, as the sensitivity of measuring the impedance of extracellular fluid is frequency dependent. It has previously been shown that the best frequency to detect extracellular fluid is 0 kHz (or DC). However, measurement at this frequency is not possible in practice due to the high skin impedance at DC, and an estimate is usually determined from low frequency measurements. This study investigated the efficacy of various low frequency ranges for the detection of lymphedema. Methods and Results: Limb impedance was measured at 256 frequencies between 3 kHz and 1000 kHz for a sample control population, arm lymphedema population, and leg lymphedema population. Limb impedance was measured using the ImpediMed SFB7 and ImpediMed L-Dex® U400 with equipotential electrode placement on the wrists and ankles. The contralateral limb impedance ratio for arms and legs was used to calculate a lymphedema index (L-Dex) at each measurement frequency. The standard deviation of the limb impedance ratio in a healthy control population has been shown to increase with frequency for both the arm and leg. Box and whisker plots of the spread of the control and lymphedema populations show that there exists good differentiation between the arm and leg L-Dex measured for lymphedema subjects and the arm and leg L-Dex measured for control subjects up to a frequency of about 30 kHz. Conclusions: It can be concluded that impedance measurements above a frequency of 30 kHz decrease sensitivity to extracellular fluid and are not reliable for early detection of lymphedema.
Resumo:
The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of seven published/submitted papers, of which one has been published, three accepted for publication and the other three are under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of proposing strategies for the performance control of Distributed Generation (DG) system with digital estimation of power system signal parameters. Distributed Generation (DG) has been recently introduced as a new concept for the generation of power and the enhancement of conventionally produced electricity. Global warming issue calls for renewable energy resources in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cell and micro turbine will gain substantial momentum in the near future. Technically, DG can be a viable solution for the issue of the integration of renewable or non-conventional energy resources. Basically, DG sources can be connected to local power system through power electronic devices, i.e. inverters or ac-ac converters. The interconnection of DG systems to power system as a compensator or a power source with high quality performance is the main aim of this study. Source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, distortion at the point of common coupling in weak source cases, source current power factor, and synchronism of generated currents or voltages are the issues of concern. The interconnection of DG sources shall be carried out by using power electronics switching devices that inject high frequency components rather than the desired current. Also, noise and harmonic distortions can impact the performance of the control strategies. To be able to mitigate the negative effect of high frequency and harmonic as well as noise distortion to achieve satisfactory performance of DG systems, new methods of signal parameter estimation have been proposed in this thesis. These methods are based on processing the digital samples of power system signals. Thus, proposing advanced techniques for the digital estimation of signal parameters and methods for the generation of DG reference currents using the estimates provided is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. One of the main parameters of a power system signal is its frequency. Phasor Measurement (PM) technique is one of the renowned and advanced techniques used for the estimation of power system frequency. Chapter 2 focuses on an in-depth analysis conducted on the PM technique to reveal its strengths and drawbacks. The analysis will be followed by a new technique proposed to enhance the speed of the PM technique while the input signal is free of even-order harmonics. The other techniques proposed in this thesis as the novel ones will be compared with the PM technique comprehensively studied in Chapter 2. An algorithm based on the concept of Kalman filtering is proposed in Chapter 3. The algorithm is intended to estimate signal parameters like amplitude, frequency and phase angle in the online mode. The Kalman filter is modified to operate on the output signal of a Finite Impulse Response (FIR) filter designed by a plain summation. The frequency estimation unit is independent from the Kalman filter and uses the samples refined by the FIR filter. The frequency estimated is given to the Kalman filter to be used in building the transition matrices. The initial settings for the modified Kalman filter are obtained through a trial and error exercise. Another algorithm again based on the concept of Kalman filtering is proposed in Chapter 4 for the estimation of signal parameters. The Kalman filter is also modified to operate on the output signal of the same FIR filter explained above. Nevertheless, the frequency estimation unit, unlike the one proposed in Chapter 3, is not segregated and it interacts with the Kalman filter. The frequency estimated is given to the Kalman filter and other parameters such as the amplitudes and phase angles estimated by the Kalman filter is taken to the frequency estimation unit. Chapter 5 proposes another algorithm based on the concept of Kalman filtering. This time, the state parameters are obtained through matrix arrangements where the noise level is reduced on the sample vector. The purified state vector is used to obtain a new measurement vector for a basic Kalman filter applied. The Kalman filter used has similar structure to a basic Kalman filter except the initial settings are computed through an extensive math-work with regards to the matrix arrangement utilized. Chapter 6 proposes another algorithm based on the concept of Kalman filtering similar to that of Chapter 3. However, this time the initial settings required for the better performance of the modified Kalman filter are calculated instead of being guessed by trial and error exercises. The simulations results for the parameters of signal estimated are enhanced due to the correct settings applied. Moreover, an enhanced Least Error Square (LES) technique is proposed to take on the estimation when a critical transient is detected in the input signal. In fact, some large, sudden changes in the parameters of the signal at these critical transients are not very well tracked by Kalman filtering. However, the proposed LES technique is found to be much faster in tracking these changes. Therefore, an appropriate combination of the LES and modified Kalman filtering is proposed in Chapter 6. Also, this time the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 7 proposes the other algorithm based on the concept of Kalman filtering similar to those of Chapter 3 and 6. However, this time an optimal digital filter is designed instead of the simple summation FIR filter. New initial settings for the modified Kalman filter are calculated based on the coefficients of the digital filter applied. Also, the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 8 uses the estimation algorithm proposed in Chapter 7 for the interconnection scheme of a DG to power network. Robust estimates of the signal amplitudes and phase angles obtained by the estimation approach are used in the reference generation of the compensation scheme. Several simulation tests provided in this chapter show that the proposed scheme can very well handle the source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, and synchronism of generated currents or voltages. The purposed compensation scheme also prevents distortion in voltage at the point of common coupling in weak source cases, balances the source currents, and makes the supply side power factor a desired value.
Resumo:
Introduction / objectives Many strategies are used to control MRSA in hospitals. Only a few have been assessed in clinical trials and it is not obvious how findings should be generalised between settings. Uncertainty remains about which strategies represent the most appropriate use of scarce resources. We assess the cost-effectiveness of alternative MRSA screening and infection control strategies in England and Wales and discuss international relevance. Methods Models of MRSA transmission in ICUs and general medical (GM) wards were developed and used to evaluate different screening methods combined with decolonisation or isolation. Strategies were compared in terms of costs and health benefits (quality adjusted life years, QALYs). Different prevalences, proportions of high risk patients and ward sizes were investigated, and probabilistic sensitivity analyses (PSA) conducted. Results Decolonisation strategies were cost-saving in ICUs at a 5% admission prevalence, with admission and weekly PCR screening the most cost-effective (£3,929/QALY). In ICUs, screening and isolation reduced infection rates by ~10%. With admission prevalence ≤5%, targeting screening and isolation to high risk patients was optimal. In GM wards decolonisation and isolation strategies, though able to reduce MRSA infection rates up to ~50%, were not cost-effective. Conclusion The largest reductions in MRSA infection were achieved by screening and decolonisation strategies, and were cost-effective in ICU settings. In comparison, there is limited potential for screening and control strategies to be cost-effective in GM wards due to lower infection and mortality rates.
Resumo:
Train delay is one of the most important indexes to evaluate the service quality of the railway. Because of the interactions of movement among trains, a delayed train may conflict with trains scheduled on other lines at junction area. Train that loses conflict may be forced to stop or slow down because of restrictive signals, which consequently leads to the loss of run-time and probably enlarges more delays. This paper proposes a time-saving train control method to recover delays as soon as possible. In the proposed method, golden section search is adopted to identify the optimal train speed at the expected time of restrictive signal aspect upgrades, which enables the train to depart from the conflicting area as soon as possible. A heuristic method is then developed to attain the advisory train speed profile assisting drivers in train control. Simulation study indicates that the proposed method enables the train to recover delays as soon as possible in case of disturbances at railway junctions, in comparison with the traditional maximum traction strategy and the green wave strategy.
Resumo:
The paper investigates a detailed Active Shock Control Bump Design Optimisation on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 to reduce cruise drag at transonic flow conditions using Evolutionary Algorithms (EAs) coupled to a robust design approach. For the uncertainty design parameters, the positions of boundary layer transition (xtr) and the coefficient of lift (Cl) are considered (250 stochastic samples in total). In this paper, two robust design methods are considered; the first approach uses a standard robust design method, which evaluates one design model at 250 stochastic conditions for uncertainty. The second approach is the combination of a standard robust design method and the concept of hierarchical (multi-population) sampling (250, 50, 15) for uncertainty. Numerical results show that the evolutionary optimization method coupled to uncertainty design techniques produces useful and reliable Pareto optimal SCB shapes which have low sensitivity and high aerodynamic performance while having significant total drag reduction. In addition,it also shows the benefit of using hierarchical robust method for detailed uncertainty design optimization.
Resumo:
Serving as a powerful tool for extracting localized variations in non-stationary signals, applications of wavelet transforms (WTs) in traffic engineering have been introduced; however, lacking in some important theoretical fundamentals. In particular, there is little guidance provided on selecting an appropriate WT across potential transport applications. This research described in this paper contributes uniquely to the literature by first describing a numerical experiment to demonstrate the shortcomings of commonly-used data processing techniques in traffic engineering (i.e., averaging, moving averaging, second-order difference, oblique cumulative curve, and short-time Fourier transform). It then mathematically describes WT’s ability to detect singularities in traffic data. Next, selecting a suitable WT for a particular research topic in traffic engineering is discussed in detail by objectively and quantitatively comparing candidate wavelets’ performances using a numerical experiment. Finally, based on several case studies using both loop detector data and vehicle trajectories, it is shown that selecting a suitable wavelet largely depends on the specific research topic, and that the Mexican hat wavelet generally gives a satisfactory performance in detecting singularities in traffic and vehicular data.
Resumo:
In this work we present an optimized fuzzy visual servoing system for obstacle avoidance using an unmanned aerial vehicle. The cross-entropy theory is used to optimise the gains of our controllers. The optimization process was made using the ROS-Gazebo 3D simulation with purposeful extensions developed for our experiments. Visual servoing is achieved through an image processing front-end that uses the Camshift algorithm to detect and track objects in the scene. Experimental flight trials using a small quadrotor were performed to validate the parameters estimated from simulation. The integration of cross- entropy methods is a straightforward way to estimate optimal gains achieving excellent results when tested in real flights.
Resumo:
The design-build (DB) system is a popular and effective delivery method of construction projects worldwide. After owners decide to procure their projects through the DB system, they may wish to determine the optimal proportion of design to be provided in the DB request for proposals (RFPs), which serve as solicitations for design-builders and describe the scope of work. However, this presents difficulties to DB owners and there is little, if any, systematic research in this area. This paper reports on an empirical study in the USA entailing both an online questionnaire survey and Delphi survey to identify and evaluate the factors influencing owners’ decisions in determining the proportion of design to include in DB RFPs. Eleven factors are identified, i.e. (1) clarity of project scope; (2) applicability of performance specifications; (3) desire for design innovation; (4) site constraints; (5) availability of competent design-builders; (6) project control requirements; (7) user group involvement level; (8) third party requirements; (9) owner experience with DB; (10) project complexity; and (11) schedule constraints. A statistically significant agreement on the eleven factors was also obtained from the (mainly non-owner) Delphi experts. Although some of the experts hold different opinions on how these factors affect the proportion of design, these findings furnish various stakeholders with a better understanding of the delivery process of DB projects and the appropriate provision of project information in DB RFPs. As the result is mainly industry opinion concerning the optimal proportion of design, in addition and for completeness, future studies should be conducted to obtain a big picture of the optimal proportion of design by means of seeking owners’ inputs.
Resumo:
Background Despite evidence that up to 35% of patients with cancer experience significant distress, access to effective psychosocial care is limited by lack of systematic approaches to assessment, a paucity of psychosocial services, and patient reluctance to accept treatment either because of perceived stigma or difficulties with access to specialist psycho-oncology services due to isolation or disease burden. This paper presents an overview of a randomised study to evaluate the effectiveness of a brief tailored psychosocial Intervention delivered by health professionals in cancer care who undergo focused training and participate in clinical supervision. Methods/design Health professionals from the disciplines of nursing, occupational therapy, speech pathology, dietetics, physiotherapy or radiation therapy will participate in training to deliver the psychosocial Intervention focusing on core concepts of supportive-expressive, cognitive and dignity-conserving care. Health professional training will consist of completion of a self-directed manual and participation in a skills development session. Participating health professionals will be supported through structured clinical supervision whilst delivering the Intervention. In the stepped wedge design each of the 5 participating clinical sites will be allocated in random order from Control condition to Training then delivery of the Intervention. A total of 600 patients will be recruited across all sites. Based on level of distress or risk factors eligible patients will receive up to 4 sessions, each of up to 30 minutes in length, delivered face-to-face or by telephone. Participants will be assessed at baseline and 10-week follow-up. Patient outcome measures include anxiety and depression, quality of life, unmet psychological and supportive care needs. Health professional measures include psychological morbidity, stress and burnout. Process evaluation will be conducted to assess perceptions of participation in the study and the factors that may promote translation of learning into practice. Discussion This study will provide important information about the effectiveness of a brief tailored psychological Intervention for patients with cancer and the potential to prevent development of significant distress in patients considered at risk. It will yield data about the feasibility of this model of care in routine clinical practice and identify enablers and barriers to its systematic implementation in cancer settings.
Resumo:
Control of biospecimen quality that is linked to processing is one of the goals of biospecimen science. Consensus is lacking, however, regarding optimal sample quality-control (QC) tools (ie, markers and assays). The aim of this review was to identify QC tools, both for fluid and solid-tissue samples, based on a comprehensive and critical literature review. The most readily applicable tools are those with a known threshold for the preanalytical variation and a known reference range for the QC analyte. Only a few meaningful markers were identified that meet these criteria, such as CD40L for assessing serum exposure at high temperatures and VEGF for assessing serum freeze-thawing. To fully assess biospecimen quality, multiple QC markers are needed. Here we present the most promising biospecimen QC tools that were identified.