127 resultados para Nonlinear oscillations
Resumo:
Background Birth weight and length have seasonal fluctuations. Previous analyses of birth weight by latitude effects identified seemingly contradictory results, showing both 6 and 12 monthly periodicities in weight. The aims of this paper are twofold: (a) to explore seasonal patterns in a large, Danish Medical Birth Register, and (b) to explore models based on seasonal exposures and a non-linear exposure-risk relationship. Methods Birth weight and birth lengths on over 1.5 million Danish singleton, live births were examined for seasonality. We modelled seasonal patterns based on linear, U- and J-shaped exposure-risk relationships. We then added an extra layer of complexity by modelling weighted population-based exposure patterns. Results The Danish data showed clear seasonal fluctuations for both birth weight and birth length. A bimodal model best fits the data, however the amplitude of the 6 and 12 month peaks changed over time. In the modelling exercises, U- and J-shaped exposure-risk relationships generate time series with both 6 and 12 month periodicities. Changing the weightings of the population exposure risks result in unexpected properties. A J-shaped exposure-risk relationship with a diminishing population exposure over time fitted the observed seasonal pattern in the Danish birth weight data. Conclusion In keeping with many other studies, Danish birth anthropometric data show complex and shifting seasonal patterns. We speculate that annual periodicities with non-linear exposure-risk models may underlie these findings. Understanding the nature of seasonal fluctuations can help generate candidate exposures.
Resumo:
In this paper, a variable-order nonlinear cable equation is considered. A numerical method with first-order temporal accuracy and fourth-order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by Fourier analysis. We also propose an improved numerical method with second-order temporal accuracy and fourth-order spatial accuracy. Finally, the results of a numerical example support the theoretical analysis.
Resumo:
Higher-order spectral analysis is used to detect the presence of secondary and tertiary forced waves associated with the nonlinearity of energetic swell observed in 8- and 13-m water depths. Higher-order spectral analysis techniques are first described and then applied to the field data, followed by a summary of the results.
Resumo:
Polynomial models are shown to simulate accurately the quadratic and cubic nonlinear interactions (e.g. higher-order spectra) of time series of voltages measured in Chua's circuit. For circuit parameters resulting in a spiral attractor, bispectra and trispectra of the polynomial model are similar to those from the measured time series, suggesting that the individual interactions between triads and quartets of Fourier components that govern the process dynamics are modeled accurately. For parameters that produce the double-scroll attractor, both measured and modeled time series have small bispectra, but nonzero trispectra, consistent with higher-than-second order nonlinearities dominating the chaos.
Resumo:
We develop a new analytical solution for a reactive transport model that describes the steady-state distribution of oxygen subject to diffusive transport and nonlinear uptake in a sphere. This model was originally reported by Lin (Journal of Theoretical Biology, 1976 v60, pp449–457) to represent the distribution of oxygen inside a cell and has since been studied extensively by both the numerical analysis and formal analysis communities. Here we extend these previous studies by deriving an analytical solution to a generalized reaction-diffusion equation that encompasses Lin’s model as a particular case. We evaluate the solution for the parameter combinations presented by Lin and show that the new solutions are identical to a grid-independent numerical approximation.
Resumo:
Autonomous guidance of agricultural vehiclesis vital as mechanized farming production becomes more prevalent. It is crucial that tractor-trailers are guided with accuracy in both lateral and longitudinal directions, whilst being affected by large disturbance forces, or slips, owing to uncertain and undulating terrain. Successful research has been concentrated on trajectory control which can provide longitudinal and lateral accuracy if the vehicle moves without sliding, and the trailer is passive. In this paper, the problem of robust trajectory tracking along straight and circular paths of a tractor-steerable trailer is addressed. By utilizing a robust combination of backstepping and nonlinear PI control, a robust, nonlinear controller is proposed. For vehicles subjected to sliding, the proposed controller makes the lateral deviations and the orientation errors of the tractor and trailer converge to a neighborhood near the origin. Simulation results are presented to illustrate that the suggested controller ensures precise trajectory tracking in the presence of slip.
Resumo:
This paper presents a behavioral car-following model based on empirical trajectory data that is able to reproduce the spontaneous formation and ensuing propagation of stop-and-go waves in congested traffic. By analyzing individual drivers’ car-following behavior throughout oscillation cycles it is found that this behavior is consistent across drivers and can be captured by a simple model. The statistical analysis of the model’s parameters reveals that there is a strong correlation between driver behavior before and during the oscillation, and that this correlation should not be ignored if one is interested in microscopic output. If macroscopic outputs are of interest, simulation results indicate that an existing model with fewer parameters can be used instead. This is shown for traffic oscillations caused by rubbernecking as observed in the US 101 NGSIM dataset. The same experiment is used to establish the relationship between rubbernecking behavior and the period of oscillations.
Resumo:
This paper illustrates robust fixed order power oscillation damper design for mitigating power systems oscillations. From implementation and tuning point of view, such low and fixed structure is common practice for most practical applications, including power systems. However, conventional techniques of optimal and robust control theory cannot handle the constraint of fixed-order as it is, in general, impossible to ensure a target closed-loop transfer function by a controller of any given order. This paper deals with the problem of synthesizing or designing a feedback controller of dynamic order for a linear time-invariant plant for a fixed plant, as well as for an uncertain family of plants containing parameter uncertainty, so that stability, robust stability and robust performance are attained. The desired closed-loop specifications considered here are given in terms of a target performance vector representing a desired closed-loop design. The performance of the designed controller is validated through non-linear simulations for a range of contingencies.
Resumo:
A standard method for the numerical solution of partial differential equations (PDEs) is the method of lines. In this approach the PDE is discretised in space using �finite di�fferences or similar techniques, and the resulting semidiscrete problem in time is integrated using an initial value problem solver. A significant challenge when applying the method of lines to fractional PDEs is that the non-local nature of the fractional derivatives results in a discretised system where each equation involves contributions from many (possibly every) spatial node(s). This has important consequences for the effi�ciency of the numerical solver. First, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. Second, since the Jacobian matrix of the system is dense (partially or fully), methods that avoid the need to form and factorise this matrix are preferred. In this paper, we consider a nonlinear two-sided space-fractional di�ffusion equation in one spatial dimension. A key contribution of this paper is to demonstrate how an eff�ective preconditioner is crucial for improving the effi�ciency of the method of lines for solving this equation. In particular, we show how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.
Resumo:
Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.