97 resultados para Noisy corpora.
Resumo:
The quality of discovered features in relevance feedback (RF) is the key issue for effective search query. Most existing feedback methods do not carefully address the issue of selecting features for noise reduction. As a result, extracted noisy features can easily contribute to undesirable effectiveness. In this paper, we propose a novel feature extraction method for query formulation. This method first extract term association patterns in RF as knowledge for feature extraction. Negative RF is then used to improve the quality of the discovered knowledge. A novel information filtering (IF) model is developed to evaluate the proposed method. The experimental results conducted on Reuters Corpus Volume 1 and TREC topics confirm that the proposed model achieved encouraging performance compared to state-of-the-art IF models.
Resumo:
It is a big challenge to clearly identify the boundary between positive and negative streams. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on RCV1, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
Audio-visualspeechrecognition, or the combination of visual lip-reading with traditional acoustic speechrecognition, has been previously shown to provide a considerable improvement over acoustic-only approaches in noisy environments, such as that present in an automotive cabin. The research presented in this paper will extend upon the established audio-visualspeechrecognition literature to show that further improvements in speechrecognition accuracy can be obtained when multiple frontal or near-frontal views of a speaker's face are available. A series of visualspeechrecognition experiments using a four-stream visual synchronous hidden Markov model (SHMM) are conducted on the four-camera AVICAR automotiveaudio-visualspeech database. We study the relative contribution between the side and central orientated cameras in improving visualspeechrecognition accuracy. Finally combination of the four visual streams with a single audio stream in a five-stream SHMM demonstrates a relative improvement of over 56% in word recognition accuracy when compared to the acoustic-only approach in the noisiest conditions of the AVICAR database.
Resumo:
This paper presents the application of a monocular visual SLAMon a fixed-wing small Unmanned Aerial System (sUAS) capable of simultaneous estimation of aircraft pose and scene structure. We demonstrate the robustness of unconstrained vision alone in producing reliable pose estimates of a sUAS, at altitude. It is ultimately capable of online state estimation feedback for aircraft control and next-best-view estimation for complete map coverage without the use of additional sensors.We explore some of the challenges of visual SLAM from a sUAS including dealing with planar structure, distant scenes and noisy observations. The developed techniques are applied on vision data gathered from a fast-moving fixed-wing radio control aircraft flown over a 1×1km rural area at an altitude of 20-100m.We present both raw Structure from Motion results and a SLAM solution that includes FAB-MAP based loop-closures and graph-optimised pose. Timing information is also presented to demonstrate near online capabilities. We compare the accuracy of the 6-DOF pose estimates to an off-the-shelfGPS aided INS over a 1.7kmtrajectory.We also present output 3D reconstructions of the observed scene structure and texture that demonstrates future applications in autonomous monitoring and surveying.
Resumo:
At present, many approaches have been proposed for deformable face alignment with varying degrees of success. However, the common drawback to nearly all these approaches is the inaccurate landmark registrations. The registration errors which occur are predominantly heterogeneous (i.e. low error for some frames in a sequence and higher error for others). In this paper we propose an approach for simultaneously aligning an ensemble of deformable face images stemming from the same subject given noisy heterogeneous landmark estimates. We propose that these initial noisy landmark estimates can be used as an “anchor” in conjunction with known state-of-the-art objectives for unsupervised image ensemble alignment. Impressive alignment performance is obtained using well known deformable face fitting algorithms as “anchors.
Resumo:
The benefits of applying tree-based methods to the purpose of modelling financial assets as opposed to linear factor analysis are increasingly being understood by market practitioners. Tree-based models such as CART (classification and regression trees) are particularly well suited to analysing stock market data which is noisy and often contains non-linear relationships and high-order interactions. CART was originally developed in the 1980s by medical researchers disheartened by the stringent assumptions applied by traditional regression analysis (Brieman et al. [1984]). In the intervening years, CART has been successfully applied to many areas of finance such as the classification of financial distress of firms (see Frydman, Altman and Kao [1985]), asset allocation (see Sorensen, Mezrich and Miller [1996]), equity style timing (see Kao and Shumaker [1999]) and stock selection (see Sorensen, Miller and Ooi [2000])...
Resumo:
Many methods exist at the moment for deformable face fitting. A drawback to nearly all these approaches is that they are (i) noisy in terms of landmark positions, and (ii) the noise is biased across frames (i.e. the misalignment is toward common directions across all frames). In this paper we propose a grouped $\mathcal{L}1$-norm anchored method for simultaneously aligning an ensemble of deformable face images stemming from the same subject, given noisy heterogeneous landmark estimates. Impressive alignment performance improvement and refinement is obtained using very weak initialization as "anchors".
Resumo:
With the overwhelming increase in the amount of texts on the web, it is almost impossible for people to keep abreast of up-to-date information. Text mining is a process by which interesting information is derived from text through the discovery of patterns and trends. Text mining algorithms are used to guarantee the quality of extracted knowledge. However, the extracted patterns using text or data mining algorithms or methods leads to noisy patterns and inconsistency. Thus, different challenges arise, such as the question of how to understand these patterns, whether the model that has been used is suitable, and if all the patterns that have been extracted are relevant. Furthermore, the research raises the question of how to give a correct weight to the extracted knowledge. To address these issues, this paper presents a text post-processing method, which uses a pattern co-occurrence matrix to find the relation between extracted patterns in order to reduce noisy patterns. The main objective of this paper is not only reducing the number of closed sequential patterns, but also improving the performance of pattern mining as well. The experimental results on Reuters Corpus Volume 1 data collection and TREC filtering topics show that the proposed method is promising.
Resumo:
The effects of ethanol fumigation on the inter-cycle variability of key in-cylinder pressure parameters in a modern common rail diesel engine have been investigated. Specifically, maximum rate of pressure rise, peak pressure, peak pressure timing and ignition delay were investigated. A new methodology for investigating the start of combustion was also proposed and demonstrated—which is particularly useful with noisy in-cylinder pressure data as it can have a significant effect on the calculation of an accurate net rate of heat release indicator diagram. Inter-cycle variability has been traditionally investigated using the coefficient of variation. However, deeper insight into engine operation is given by presenting the results as kernel density estimates; hence, allowing investigation of otherwise unnoticed phenomena, including: multi-modal and skewed behaviour. This study has found that operation of a common rail diesel engine with high ethanol substitutions (>20% at full load, >30% at three quarter load) results in a significant reduction in ignition delay. Further, this study also concluded that if the engine is operated with absolute air to fuel ratios (mole basis) less than 80, the inter-cycle variability is substantially increased compared to normal operation.
Resumo:
A big challenge for classification on text is the noisy of text data. It makes classification quality low. Many classification process can be divided into two sequential steps scoring and threshold setting (thresholding). Therefore to deal with noisy data problem, it is important to describe positive feature effectively scoring and to set a suitable threshold. Most existing text classifiers do not concentrate on these two jobs. In this paper, we propose a novel text classifier with pattern-based scoring that describe positive feature effectively, followed by threshold setting. The thresholding is based on score of training set, make it is simple to implement in other scoring methods. Experiment shows that our pattern-based classifier is promising.
Resumo:
Highly sensitive infrared (IR) cameras provide high-resolution diagnostic images of the temperature and vascular changes of breasts. These images can be processed to emphasize hot spots that exhibit early and subtle changes owing to pathology. The resulting images show clusters that appear random in shape and spatial distribution but carry class dependent information in shape and texture. Automated pattern recognition techniques are challenged because of changes in location, size and orientation of these clusters. Higher order spectral invariant features provide robustness to such transformations and are suited for texture and shape dependent information extraction from noisy images. In this work, the effectiveness of bispectral invariant features in diagnostic classification of breast thermal images into malignant, benign and normal classes is evaluated and a phase-only variant of these features is proposed. High resolution IR images of breasts, captured with measuring accuracy of ±0.4% (full scale) and temperature resolution of 0.1 °C black body, depicting malignant, benign and normal pathologies are used in this study. Breast images are registered using their lower boundaries, automatically extracted using landmark points whose locations are learned during training. Boundaries are extracted using Canny edge detection and elimination of inner edges. Breast images are then segmented using fuzzy c-means clustering and the hottest regions are selected for feature extraction. Bispectral invariant features are extracted from Radon projections of these images. An Adaboost classifier is used to select and fuse the best features during training and then classify unseen test images into malignant, benign and normal classes. A data set comprising 9 malignant, 12 benign and 11 normal cases is used for evaluation of performance. Malignant cases are detected with 95% accuracy. A variant of the features using the normalized bispectrum, which discards all magnitude information, is shown to perform better for classification between benign and normal cases, with 83% accuracy compared to 66% for the original.
Resumo:
This paper investigates advanced channel compensation techniques for the purpose of improving i-vector speaker verification performance in the presence of high intersession variability using the NIST 2008 and 2010 SRE corpora. The performance of four channel compensation techniques: (a) weighted maximum margin criterion (WMMC), (b) source-normalized WMMC (SN-WMMC), (c) weighted linear discriminant analysis (WLDA), and; (d) source-normalized WLDA (SN-WLDA) have been investigated. We show that, by extracting the discriminatory information between pairs of speakers as well as capturing the source variation information in the development i-vector space, the SN-WLDA based cosine similarity scoring (CSS) i-vector system is shown to provide over 20% improvement in EER for NIST 2008 interview and microphone verification and over 10% improvement in EER for NIST 2008 telephone verification, when compared to SN-LDA based CSS i-vector system. Further, score-level fusion techniques are analyzed to combine the best channel compensation approaches, to provide over 8% improvement in DCF over the best single approach, (SN-WLDA), for NIST 2008 interview/ telephone enrolment-verification condition. Finally, we demonstrate that the improvements found in the context of CSS also generalize to state-of-the-art GPLDA with up to 14% relative improvement in EER for NIST SRE 2010 interview and microphone verification and over 7% relative improvement in EER for NIST SRE 2010 telephone verification.
Resumo:
In this paper we use the algorithm SeqSLAM to address the question, how little and what quality of visual information is needed to localize along a familiar route? We conduct a comprehensive investigation of place recognition performance on seven datasets while varying image resolution (primarily 1 to 512 pixel images), pixel bit depth, field of view, motion blur, image compression and matching sequence length. Results confirm that place recognition using single images or short image sequences is poor, but improves to match or exceed current benchmarks as the matching sequence length increases. We then present place recognition results from two experiments where low-quality imagery is directly caused by sensor limitations; in one, place recognition is achieved along an unlit mountain road by using noisy, long-exposure blurred images, and in the other, two single pixel light sensors are used to localize in an indoor environment. We also show failure modes caused by pose variance and sequence aliasing, and discuss ways in which they may be overcome. By showing how place recognition along a route is feasible even with severely degraded image sequences, we hope to provoke a re-examination of how we develop and test future localization and mapping systems.
Resumo:
Achieving a robust, accurately scaled pose estimate in long-range stereo presents significant challenges. For large scene depths, triangulation from a single stereo pair is inadequate and noisy. Additionally, vibration and flexible rigs in airborne applications mean accurate calibrations are often compromised. This paper presents a technique for accurately initializing a long-range stereo VO algorithm at large scene depth, with accurate scale, without explicitly computing structure from rigidly fixed camera pairs. By performing a monocular pose estimate over a window of frames from a single camera, followed by adding the secondary camera frames in a modified bundle adjustment, an accurate, metrically scaled pose estimate can be found. To achieve this the scale of the stereo pair is included in the optimization as an additional parameter. Results are presented both on simulated and field gathered data from a fixed-wing UAV flying at significant altitude, where the epipolar geometry is inaccurate due to structural deformation and triangulation from a single pair is insufficient. Comparisons are made with more conventional VO techniques where the scale is not explicitly optimized, and demonstrated over repeated trials to indicate robustness.
Resumo:
A significant amount of speech data is required to develop a robust speaker verification system, but it is difficult to find enough development speech to match all expected conditions. In this paper we introduce a new approach to Gaussian probabilistic linear discriminant analysis (GPLDA) to estimate reliable model parameters as a linearly weighted model taking more input from the large volume of available telephone data and smaller proportional input from limited microphone data. In comparison to a traditional pooled training approach, where the GPLDA model is trained over both telephone and microphone speech, this linear-weighted GPLDA approach is shown to provide better EER and DCF performance in microphone and mixed conditions in both the NIST 2008 and NIST 2010 evaluation corpora. Based upon these results, we believe that linear-weighted GPLDA will provide a better approach than pooled GPLDA, allowing for the further improvement of GPLDA speaker verification in conditions with limited development data.