219 resultados para Nitrogen efficiency
Resumo:
In Australia, trials conducted as 'electronic trials' have ordinarily run with the assistance of commercial service providers, with the associated costs being borne by the parties. However, an innovative approach has been taken by the courts in Queensland. In October 2007 Queensland became the first Australian jurisdiction to develop its own court-provided technology, to facilitate the conduct of an electronic trial. This technology was first used in the conduct of civil trials. The use of the technology in the civil sphere highlighted its benefits and, more significantly, demonstrated the potential to achieve much greater efficiencies. The Queensland courts have now gone further, using the court-provided technology in the high proffle criminal trial of R v Hargraves, Hargraves and Stoten, in which the three accused were tried for conspiracy to defraud the Commonwealth of Australia of about $3.7 million in tax. This paper explains the technology employed in this case and reports on the perspectives of all of the participants in the process. The representatives for all parties involved in this trial acknowledged, without reservation, that the use of the technology at trial produced considerable overall efficiencies and costs savings. The experience in this trial also demonstrates that the benefits of trial technology for the criminal justice process are greater than those for civil litigation. It shows that, when skilfully employed, trial technology presents opportunities to enhance the fairness of trials for accused persons. The paper urges governments, courts and the judiciary in all jurisdictions to continue their efforts to promote change, and to introduce mechanisms to facilitate more broadly a shift from the entrenched paper-based approach to both criminal and civil procedure to one which embraces more broadly the enormous benefits trial technology has to offer.
Resumo:
In this study we propose a virtual index for measuring the relative innovativeness of countries. Using a multistage virtual benchmarking process, the best and rational benchmark is extracted for inefficient ISs. Furthermore, Tobit and Ordinary Least Squares (OLS) regression models are used to investigate the likelihood of changes in inefficiencies by investigating country-specific factors. The empirical results relating to the virtual benchmarking process suggest that the OLS regression model would better explain changes in the performance of innovation- inefficient countries.
Resumo:
This study determines whether the inclusion of low-cost airlines in a dataset of international and domestic airlines has an impact on the efficiency scores of so-called ‘prestigious’ purportedly ‘efficient’ airlines. This is because while many airline studies concern efficiency, none has truly included a combination of international, domestic and budget airlines. The present study employs the nonparametric technique of data envelopment analysis (DEA) to investigate the technical efficiency of 53 airlines in 2006. The findings reveal that the majority of budget airlines are efficient relative to their more prestigious counterparts. Moreover, most airlines identified as inefficient are so largely because of the overutilization of non-flight assets.
Resumo:
The current study was motivated by statements made by the Economic Strategies Committee that Singapore’s recent productivity levels in services were well below countries such as the US, Japan and Hong Kong. Massive employment of foreign workers was cited as the reason for poor productivity levels. To shed more light on Singapore’s falling productivity, a nonparametric Malmquist productivity index was employed which provides measures of productivity change, technical change and efficiency change. The findings reveal that growth in total factor productivity was attributed to technical change with no improvement in efficiency change. Such results suggest that gains from TFP were input-driven rather than from a ‘best-practice’ approach such as improvements in operations or better resource allocation.
Resumo:
This paper presents the method and results of a survey of 27 of the 33 Australian universities teaching engineering education in late 2007, undertaken by The Natural Edge Project (hosted by Griffith University and the Australian National University) and supported by the National Framework for Energy Efficiency. This survey aimed to ascertain the extent of energy efficiency (EE) education, and to identify preferred methods to assist in increasing the extent to which EE education is embedded in engineering curriculum. In this paper the context for the survey is supported by a summary of the key results from a variety of surveys undertaken over the last decade internationally. The paper concludes that EE education across universities and engineering disciplines in Australia is currently highly variable and ad hoc. Based on the results of the survey, this paper highlights a number of preferred options to support educators to embed sustainability within engineering programs, and future opportunities for monitoring EE, within the context of engineering education for sustainable development (EESD).
Resumo:
In this paper, we investigate theoretically and numerically the efficiency of energy coupling from a plasmon generated by a grating coupler at one of the interfaces of a metal wedge into the plasmonic eigenmode (i.e., symmetric or quasisymmetric plasmon) experiencing nanofocusing in the wedge. Thus the energy efficiency of energy coupling into metallic nanofocusing structure is analyzed. Two different nanofocusing structures with the metal wedge surrounded by a uniform dielectric (symmetric structure) and with the metal wedge enclosed between a substrate and a cladding with different dielectricpermittivities (asymmetric structure) are considered by means of the geometrical optics (adiabatic) approximation. It is demonstrated that the efficiency of the energy coupling from the plasmon generated by the grating into the symmetric or quasisymmetric plasmon experiencing nanofocusing may vary between ∼50% to ∼100%. In particular, even a very small difference (of ∼1%–2%) between the permittivities of the substrate and the cladding may result in a significant increase in the efficiency of the energy coupling (from ∼50% up to ∼100%) into the plasmon experiencing nanofocusing. Distinct beat patterns produced by the interference of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) plasmons are predicted and analyzed with significant oscillations of the magnetic and electric field amplitudes at both the metal wedge interfaces. Physical interpretations of the predicted effects are based upon the behavior, dispersion, and dissipation of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) filmplasmons in the nanofocusing metal wedge. The obtained results will be important for optimizing metallic nanofocusing structures and minimizing coupling and dissipative losses.
Resumo:
There is worldwide interest in reducing aircraft emissions. The difficulty of reducing emissions including water vapour, carbon dioxide (CO2) and oxides of nitrogen (NOx) is mainly due from the fact that a commercial aircraft is usually designed for a particular optimal cruise altitude but may be requested or required to operate and deviate at different altitude and speeds to archive a desired or commanded flight plan, resulting in increased emissions. This is a multi- disciplinary problem with multiple trade-offs such as optimising engine efficiency, minimising fuel burnt, minimise emissions while maintaining aircraft separation and air safety. This project presents the coupling of an advanced optimisation technique with mathematical models and algorithms for aircraft emission reduction through flight optimisation. Numerical results show that the method is able to capture a set of useful trade-offs between aircraft range and NOx, and mission fuel consumption and NOx. In addition, alternative cruise operating conditions including Mach and altitude that produce minimum NOx and CO2 (minimum mission fuel weight) are suggested.
Resumo:
In recent years, development of Unmanned Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This thesis presents an investigation of methods for increasing the energy efficiency on UAVs. One method is via the development of a Mission Waypoint Optimisation (MWO) procedure for a small fixed-wing UAV, focusing on improving the onboard fuel economy. MWO deals with a pre-specified set of waypoints by modifying the given waypoints within certain limits to achieve its optimisation objectives of minimising/maximising specific parameters. A simulation model of a UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. This simulation model was separately integrated with a multi-objective Evolutionary Algorithm (MOEA) optimiser and a Sequential Quadratic Programming (SQP) solver to perform single-objective and multi-objective optimisation procedures of a set of real-world waypoints in order to minimise the onboard fuel consumption. The results of both procedures show potential in reducing fuel consumption on a UAV in a ight mission. Additionally, a parallel Hybrid-Electric Propulsion System (HEPS) on a small fixedwing UAV incorporating an Ideal Operating Line (IOL) control strategy was developed. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine was determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
This chapter provides an analysis of feedback from key stakeholders, collected as part of a research project, on the problems and tensions evident in the collective work practices of learning advisers employed in learning assistance services at an Australian metropolitan university (Peach, 2003). The term 'learning assistance' is used in the Australian higher education sector generally to refer to student support services that include assistance with academic writing and other study skills. The aim of the study was to help learning advisers and other key stakeholders develop a better understanding of the work activity with a view to using this understanding to generate improvements in service provision. Over twenty problems and associated tensions were identified through stakeholder feedback however the focus of this chapter is the analysis of tensions related to a cluster of problems referred to as cost-efficiency versus quality service. Theoretical modelling derived from the tools made available through cultural historical activity theory and expansive visibilsation (Engestrom and Miettinen, 1999) and excerpts from data are used to illustrate how different understandings of the purpose of learning assistance services impacts on the work practices of learning advisers and creates problems and tensions in relation to the type of service available (including use of technology),level of service available, and learning adviser workload.
Resumo:
The motivation of the study stems from the results reported in the Excellence in Research for Australia (ERA) 2010 report. The report showed that only 12 universities performed research at or above international standards, of which, the Group of Eight (G8) universities filled the top eight spots. While performance of universities was based on number of research outputs, total amount of research income and other quantitative indicators, the measure of efficiency or productivity was not considered. The objectives of this paper are twofold. First, to provide a review of the research performance of 37 Australian universities using the data envelopment analysis (DEA) bootstrap approach of Simar and Wilson (2007). Second, to determine sources of productivity drivers by regressing the efficiency scores against a set of environmental variables.