79 resultados para Nieto, DavidNieto, DavidDavidNieto
Resumo:
Bana et al. proposed the relation formal indistinguishability (FIR), i.e. an equivalence between two terms built from an abstract algebra. Later Ene et al. extended it to cover active adversaries and random oracles. This notion enables a framework to verify computational indistinguishability while still offering the simplicity and formality of symbolic methods. We are in the process of making an automated tool for checking FIR between two terms. First, we extend the work by Ene et al. further, by covering ordered sorts and simplifying the way to cope with random oracles. Second, we investigate the possibility of combining algebras together, since it makes the tool scalable and able to cover a wide class of cryptographic schemes. Specially, we show that the combined algebra is still computationally sound, as long as each algebra is sound. Third, we design some proving strategies and implement the tool. Basically, the strategies allow us to find a sequence of intermediate terms, which are formally indistinguishable, between two given terms. FIR between the two given terms is then guaranteed by the transitivity of FIR. Finally, we show applications of the work, e.g. on key exchanges and encryption schemes. In the future, the tool should be extended easily to cover many schemes. This work continues previous research of ours on use of compilers to aid in automated proofs for key exchange.
Resumo:
Most one-round key exchange protocols provide only weak forward secrecy at best. Furthermore, one-round protocols with strong forward secrecy often break badly when faced with an adversary who can obtain ephemeral keys. We provide a characterisation of how strong forward secrecy can be achieved in one-round key exchange. Moreover, we show that protocols exist which provide strong forward secrecy and remain secure with weak forward secrecy even when the adversary is allowed to obtain ephemeral keys. We provide a compiler to achieve this for any existing secure protocol with weak forward secrecy.
Resumo:
Many current HCI, social networking, ubiquitous computing, and context aware designs, in order for the design to function, have access to, or collect, significant personal information about the user. This raises concerns about privacy and security, in both the research community and main-stream media. From a practical perspective, in the social world, secrecy and security form an ongoing accomplishment rather than something that is set up and left alone. We explore how design can support privacy as practical action, and investigate the notion of collective information-practice of privacy and security concerns of participants of a mobile, social software for ride sharing. This paper contributes an understanding of HCI security and privacy tensions, discovered while “designing in use” using a Reflective, Agile, Iterative Design (RAID) method.
Resumo:
Just Fast Keying (JFK) is a simple, efficient and secure key exchange protocol proposed by Aiello et al. (ACM TISSEC, 2004). JFK is well known for its novel design features, notably its resistance to denial-of-service (DoS) attacks. Using Meadows’ cost-based framework, we identify a new DoS vulnerability in JFK. The JFK protocol is claimed secure in the Canetti-Krawczyk model under the Decisional Diffie-Hellman (DDH) assumption. We show that security of the JFK protocol, when reusing ephemeral Diffie-Hellman keys, appears to require the Gap Diffie-Hellman (GDH) assumption in the random oracle model. We propose a new variant of JFK that avoids the identified DoS vulnerability and provides perfect forward secrecy even under the DDH assumption, achieving the full security promised by the JFK protocol.
Resumo:
Client puzzles are moderately-hard cryptographic problems neither easy nor impossible to solve that can be used as a counter-measure against denial of service attacks on network protocols. Puzzles based on modular exponentiation are attractive as they provide important properties such as non-parallelisability, deterministic solving time, and linear granularity. We propose an efficient client puzzle based on modular exponentiation. Our puzzle requires only a few modular multiplications for puzzle generation and verification. For a server under denial of service attack, this is a significant improvement as the best known non-parallelisable puzzle proposed by Karame and Capkun (ESORICS 2010) requires at least 2k-bit modular exponentiation, where k is a security parameter. We show that our puzzle satisfies the unforgeability and difficulty properties defined by Chen et al. (Asiacrypt 2009). We present experimental results which show that, for 1024-bit moduli, our proposed puzzle can be up to 30 times faster to verify than the Karame-Capkun puzzle and 99 times faster than the Rivest et al.'s time-lock puzzle.
Resumo:
Two-party key exchange (2PKE) protocols have been rigorously analyzed under various models considering different adversarial actions. However, the analysis of group key exchange (GKE) protocols has not been as extensive as that of 2PKE protocols. Particularly, an important security attribute called key compromise impersonation (KCI) resilience has been completely ignored for the case of GKE protocols. Informally, a protocol is said to provide KCI resilience if the compromise of the long-term secret key of a protocol participant A does not allow the adversary to impersonate an honest participant B to A. In this paper, we argue that KCI resilience for GKE protocols is at least as important as it is for 2PKE protocols. Our first contribution is revised definitions of security for GKE protocols considering KCI attacks by both outsider and insider adversaries. We also give a new proof of security for an existing two-round GKE protocol under the revised security definitions assuming random oracles. We then show how to achieve insider KCIR in a generic way using a known compiler in the literature. As one may expect, this additional security assurance comes at the cost of an extra round of communication. Finally, we show that a few existing protocols are not secure against outsider KCI attacks. The attacks on these protocols illustrate the necessity of considering KCI resilience for GKE protocols.
Resumo:
A self-escrowed public key infrastructure (SE-PKI) combines the usual functionality of a public-key infrastructure with the ability to recover private keys given some trap-door information. We present an additively homomorphic variant of an existing SE-PKI for ElGamal encryption. We also propose a new efficient SE-PKI based on the ElGamal and Okamoto-Uchiyama cryptosystems that is more efficient than the previous SE-PKI. This is the first SE-PKI that does not suffer from a key doubling problem of previous SE-PKI proposals. Additionally, we present the first self-escrowed encryption schemes secure against chosen-ciphertext attack in the standard model. These schemes are also quite efficient and are based on the Cramer-Shoup cryptosystem, and the Kurosawa-Desmedt hybrid variant in different groups.
Resumo:
The privacy of efficient tree-based RFID authentication protocols is heavily dependent on the branching factor on the top layer. Indefinitely increasing the branching factor, however, is not a viable option. This paper proposes the alternate-tree walking scheme as well as two protocols to circumvent this problem. The privacy of the resulting protocols is shown to be comparable to that of linear-time protocols, where there is no leakage of information, whilst reducing the computational load of the database by one-third of what is required of tree-based protocols during authentication. We also identify and address a limitation in quantifying privacy in RFID protocols.
Resumo:
In many applications, where encrypted traffic flows from an open (public) domain to a protected (private) domain, there exists a gateway that bridges the two domains and faithfully forwards the incoming traffic to the receiver. We observe that indistringuishability against (adaptive) chosen-ciphertext attacks (IND-CCA), which is a mandatory goal in face of active attacks in a public domain, can be essentially relaxed to indistinguishability against chosen-plaintext attacks (IND-CPA) for ciphertexts once they pass the gateway that acts as an IND-CCA/CPA filter by first checking the validity of an incoming IND-CCA ciphertext, then transforming it (if valid) into an IND-CPA ciphertext, and forwarding the latter to the receipient in the private domain. "Non-trivial filtering" can result in reduced decryption costs on the receivers' side. We identify a class of encryption schemes with publicaly verifiable ciphertexts that admit generic constructions of (non-trivial) IND-CCA/CPA filters. These schemes are characterized by existence of public algorithms that can distinguish between valid and invalid ciphertexts. To this end, we formally define (non-trivial) public verifiability of ciphertexts for general encryption schemes, key encapsulation mechanisms, and hybrid encryption schemes, encompassing public-key, identity-based, and tag-based encryption flavours. We further analyze the security impact of public verifiability and discuss generic transformations and concrete constructions that enjoy this property.
Resumo:
Client puzzles are cryptographic problems that are neither easy nor hard to solve. Most puzzles are based on either number theoretic or hash inversions problems. Hash-based puzzles are very efficient but so far have been shown secure only in the random oracle model; number theoretic puzzles, while secure in the standard model, tend to be inefficient. In this paper, we solve the problem of constucting cryptographic puzzles that are secure int he standard model and are very efficient. We present an efficient number theoretic puzzle that satisfies the puzzle security definition of Chen et al. (ASIACRYPT 2009). To prove the security of our puzzle, we introduce a new variant of the interval discrete logarithm assumption which may be of independent interest, and show this new problem to be hard under reasonable assumptions. Our experimental results show that, for 512-bit modulus, the solution verification time of our proposed puzzle can be up to 50x and 89x faster than the Karame-Capkum puzzle and the Rivest et al.'s time-lock puzzle respectively. In particular, the solution verification tiem of our puzzle is only 1.4x slower than that of Chen et al.'s efficient hash based puzzle.
Resumo:
Timed-release cryptography addresses the problem of “sending messages into the future”: information is encrypted so that it can only be decrypted after a certain amount of time, either (a) with the help of a trusted third party time server, or (b) after a party performs the required number of sequential operations. We generalise the latter case to what we call effort-release public key encryption (ER-PKE), where only the party holding the private key corresponding to the public key can decrypt, and only after performing a certain amount of computation which may or may not be parallelisable. Effort-release PKE generalises both the sequential-operation-based timed-release encryption of Rivest, Shamir, and Wagner, and also the encapsulated key escrow techniques of Bellare and Goldwasser. We give a generic construction for ER-PKE based on the use of moderately hard computational problems called puzzles. Our approach extends the KEM/DEM framework for public key encryption by introducing a difficulty notion for KEMs which results in effort-release PKE. When the puzzle used in our generic construction is non-parallelisable, we recover timed-release cryptography, with the addition that only the designated receiver (in the public key setting) can decrypt.
Resumo:
We introduce the concept of Revocable Predicate Encryption (RPE), which extends current predicate encryption setting with revocation support: private keys can be used to decrypt an RPE ciphertext only if they match the decryption policy (defined via attributes encoded into the ciphertext and predicates associated with private keys) and were not revoked by the time the ciphertext was created. We formalize the notion of attribute hiding in the presence of revocation and propose an RPE scheme, called AH-RPE, which achieves attribute-hiding under the Decision Linear assumption in the standard model. We then present a stronger privacy notion, termed full hiding, which further cares about privacy of revoked users. We propose another RPE scheme, called FH-RPE, that adopts the Subset Cover Framework and offers full hiding under the Decision Linear assumption in the standard model. The scheme offers very flexible privacy-preserving access control to encrypted data and can be used in sender-local revocation scenarios.