174 resultados para Motor drive
Resumo:
The impact of government policy can become a strong enabler for the use of e-portfolios to support learning and employability. E-portfolio policy and practice seeks to draw together the different elements of integrated education and learning, graduate attributes, employability skills, professional competencies and lifelong learning, ultimately to support an engaged and productive workforce. Drawing on and updating the research findings from a nationwide research study conducted as part of the Australian ePortfolio Project, the present chapter discusses two important areas of the e-portfolio environment, government policy and academic policy. The focus is on those jurisdictions where government and academic policy issues have had a significant impact on e-portfolio practice, such as the European Union, the Netherlands, Scandinavian countries and the United Kingdom, as well as in Australia and New Zealand. These jurisdictions are of interest as government policy discussions are currently focusing on the need for closer integration between the different education and employment sectors. Finally, issues to be considered as well as strategies for driving policy decision making are presented.
Resumo:
Bearing damage in modern inverter-fed AC drive systems is more common than in motors working with 50 or 60 Hz power supply. Fast switching transients and common mode voltage generated by a PWM inverter cause unwanted shaft voltage and resultant bearing currents. Parasitic capacitive coupling creates a path to discharge current in rotors and bearings. In order to analyze bearing current discharges and their effect on bearing damage under different conditions, calculation of the capacitive coupling between the outer and inner races is needed. During motor operation, the distances between the balls and races may change the capacitance values. Due to changing of the thickness and spatial distribution of the lubricating grease, this capacitance does not have a constant value and is known to change with speed and load. Thus, the resultant electric field between the races and balls varies with motor speed. The lubricating grease in the ball bearing cannot withstand high voltages and a short circuit through the lubricated grease can occur. At low speeds, because of gravity, balls and shaft voltage may shift down and the system (ball positions and shaft) will be asymmetric. In this study, two different asymmetric cases (asymmetric ball position, asymmetric shaft position) are analyzed and the results are compared with the symmetric case. The objective of this paper is to calculate the capacitive coupling and electric fields between the outer and inner races and the balls at different motor speeds in symmetrical and asymmetrical shaft and balls positions. The analysis is carried out using finite element simulations to determine the conditions which will increase the probability of high rates of bearing failure due to current discharges through the balls and races.
Resumo:
The use of artificial neural networks (ANNs) to identify and control induction machines is proposed. Two systems are presented: a system to adaptively control the stator currents via identification of the electrical dynamics, and a system to adaptively control the rotor speed via identification of the mechanical and current-fed system dynamics. Both systems are inherently adaptive as well as self-commissioning. The current controller is a completely general nonlinear controller which can be used together with any drive algorithm. Various advantages of these control schemes over conventional schemes are cited, and the combined speed and current control scheme is compared with the standard vector control scheme
Resumo:
The design and implementation of a high-power (2 MW peak) vector control drive is described. The inverter switching frequency is low, resulting in high-harmonic-content current waveforms. A block diagram of the physical system is given, and each component is described in some detail. The problem of commanded slip noise sensitivity, inherent in high-power vector control drives, is discussed, and a solution is proposed. Results are given which demonstrate the successful functioning of the system
Resumo:
Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites
Resumo:
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.
Resumo:
Motor vehicle emission factors are generally derived from driving tests mimicking steady state conditions or transient drive cycles. However, neither of these test conditions completely represents real world driving conditions. In particular, they fail to determine emissions generated during the accelerating phase – a condition in which urban buses spend much of their time. In this study we analyse and compare the results of time-dependant emission measurements conducted on diesel and compressed natural gas (CNG) buses during an urban driving cycle on a chassis dynamometer and we derive power-law expressions relating carbon dioxide (CO2) emission factors to the instantaneous speed while accelerating from rest. Emissions during acceleration are compared with that during steady speed operation. These results have important implications for emission modelling particularly under congested traffic conditions.
Resumo:
Measurements in the exhaust plume of a petrol-driven motor car showed that molecular cluster ions of both signs were present in approximately equal amounts. The emission rate increased sharply with engine speed while the charge symmetry remained unchanged. Measurements at the kerbside of nine motorways and five city roads showed that the mean total cluster ion concentration near city roads (603 cm-3) was about one-half of that near motorways (1211 cm-3) and about twice as high as that in the urban background (269 cm-3). Both positive and negative ion concentrations near a motorway showed a significant linear increase with traffic density (R2=0.3 at p<0.05) and correlated well with each other in real time (R2=0.87 at p<0.01). Heavy duty diesel vehicles comprised the main source of ions near busy roads. Measurements were conducted as a function of downwind distance from two motorways carrying around 120-150 vehicles per minute. Total traffic-related cluster ion concentrations decreased rapidly with distance, falling by one-half from the closest approach of 2m to 5m of the kerb. Measured concentrations decreased to background at about 15m from the kerb when the wind speed was 1.3 m s-1, this distance being greater at higher wind speed. The number and net charge concentrations of aerosol particles were also measured. Unlike particles that were carried downwind to distances of a few hundred metres, cluster ions emitted by motor vehicles were not present at more than a few tens of metres from the road.
Resumo:
OBJECTIVES: To investigate the effects of hearing impairment and distractibility on older people's driving ability, assessed under real-world conditions. DESIGN: Experimental cross-sectional study. SETTING: University laboratory setting and an on-road driving test. PARTICIPANTS: One hundred seven community-living adults aged 62 to 88. Fifty-five percent had normal hearing, 26% had a mild hearing impairment, and 19% had a moderate or greater impairment. ---------- MEASUREMENTS: Hearing was assessed using objective impairment measures (pure-tone audiometry, speech perception testing) and a self-report measure (Hearing Handicap Inventory for the Elderly). Driving was assessed on a closed road circuit under three conditions: no distracters, auditory distracters, and visual distracters. RESULTS: There was a significant interaction between hearing impairment and distracters, such that people with moderate to severe hearing impairment had significantly poorer driving performance in the presence of distracters than those with normal or mild hearing impairment. CONCLUSION: Older adults with poor hearing have greater difficulty with driving in the presence of distracters than older adults with good hearing.
Resumo:
This paper sets out to examine from published literature and crash data analyses whether alcohol in bicycle crashes is an issue about which we should be concerned. It discusses factors that have the potential to increase the number of bicycle crashes in which alcohol is involved (such growth in the size and diversity of the cyclist population, and balance and coordination demands) and factors which may reduce the importance of alcohol in bicycle crashes (such as time of data factors and child riders). It also examines data availability issues that contribute to difficulties in determining the true magnitude of the issue. Methods: This paper reviews previous research and reports analyses of data from Queensland, Australia, that examine the role of alcohol in Police-reported road crashes. In Queensland it is an offence to ride a bicycle or drive a motor vehicle with a BAC exceeding 0.05% (or lower for novice and professional drivers). Results: In the five years 2003-2007, alcohol was reported as involved in 165 bicycle crashes (4%). The bicycle rider was coded as “under the influence” or “over the prescribed BAC limit” in 15 were single unit crashes (12%). In multi-vehicle bicycle crashes, alcohol involvement was reported for 16 cyclists (0.4%) and 110 operators of other vehicles (3%). Additional analyses including characteristics of the cyclist crashes involving alcohol and the importance of missing data will be discussed in the paper. Conclusion: The increase in participation in cycling and the vulnerability of cyclists to injuries support the need to examine the role of alcohol in bicycle crashes. Current data suggest that alcohol on the part of the vehicle driver is a larger concern than alcohol on the part of the cyclist, but improvements in data collection are needed before more precise conclusions can be drawn.
Resumo:
This paper presents a new rat animat, a rat-sized bio-inspired robot platform currently being developed for embodied cognition and neuroscience research. The rodent animat is 150mm x 80mm x 70mm and has a different drive, visual, proximity, and odometry sensors, x86 PC, and LCD interface. The rat animat has a bio-inspired rodent navigation and mapping system called RatSLAM which demonstrates the capabilities of the platform and framework. A case study is presented of the robot's ability to learn the spatial layout of a figure of eight laboratory environment, including its ability to close physical loops based on visual input and odometry. A firing field plot similar to rodent 'non-conjunctive grid cells' is shown by plotting the activity of an internal network. Having a rodent animat the size of a real rat allows exploration of embodiment issues such as how the robot's sensori-motor systems and cognitive abilities interact. The initial observations concern the limitations of the deisgn as well as its strengths. For example, the visual sensor has a narrower field of view and is located much closer to the ground than for other robots in the lab, which alters the salience of visual cues and the effectiveness of different visual filtering techniques. The small size of the robot relative to corridors and open areas impacts on the possible trajectories of the robot. These perspective and size issues affect the formation and use of the cognitive map, and hence the navigation abilities of the rat animat.
Resumo:
The Tourism, Racing and Fair Trading (Miscellaneous Provisions) Act 2002 (“the Act”) which was passed on 18 April 2002 contains a number of significant amendments relevant to the operation of the Property Agents and Motor Dealers Act 2000. The main changes relevant to property transactions are: (i) Changes to the process for appointment of a real estate agent and consolidation of the appointment forms; (ii) Additions to the disclosure obligation of agents and property developers; (iii) Simplification of the process for commencing the cooling off period; (iv) Alteration of the common law position concerning when the parties are bound by a contract; (v) Removal of the requirement for a seller’s signature on the warning statement to be witnessed; (vi) Retrospective amendment of s 170 of the Body Corporate and Community Management Act 1997; (vii) Inclusion of a new power to allow inspectors to enter the place of business of a licensee or a marketeer without consent and without a warrant; and (viii) Inclusion of a new power for inspectors to require documents to be produced by marketeers. The majority of the amendments are effective from the date of assent, 24 April 2002, however, some of the amendments do not commence until a date fixed by proclamation. No proclamation has been made at the time of writing (2 May 2002). Where the amendments have not commenced this will be noted in the article. Before providing clients with advice, practitioners should carefully check proclamation details.