204 resultados para Metal cladding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanowires of different metal oxides (SnO2, ZnO) have been grown by evaporation-condensation process. Their chemical composition has been investigated by using XPS. The standard XPS quantification through main photoelectron peaks, modified Auger parameter and valence band spectra were examined for the accurate determination of oxidation state of metals in the nanowires. Morphological investigation has been conducted by acquiring and analyzing the SEM images. For the simulation of working conditions of sensor, the samples were annealed in ultra high vacuum (UHV) up to 500°C and XPS analysis repeated after this treatment. Finally, the nanowires of SnO 2 have were used to produce a novel gas sensor based on Pt/oxide/SiC structure and operating as Schottky diode. Copyright © 2008 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a range of nanomaterials have been synthesised based on metal oxyhydroxides MO(OH), where M=Al, Co, Cr, etc. Through a self-assembly hydrothermal route, metal oxyhydroxide nanomaterials with various morphologies were successfully synthesised: one dimensional boehmite (AlO(OH)) nanofibres, zero dimensional indium hydroxide (In(OH)3) nanocubes and chromium oxyhydroxide (CrO(OH)) nanoparticles, as well as two dimensional cobalt hydroxide and oxyhydroxide (Co(OH)2 & CoO(OH)) nanodiscs. In order to control the synthetic nanomaterial morphology and growth, several factors were investigated including cation concentration, temperature, hydrothermal treatment time, and pH. Metal ion doping is a promising technique to modify and control the properties of materials by intentionally introducing impurities or defects into the material. Chromium was successfully applied as a dopant for fabricating doped boehmite nanofibres. The thermal stability of the boehmite nanofibres was enhanced by chromium doping, and the photoluminescence property was introduced to the chromium doped alumina nanofibres. Doping proved to be an efficient method to modify and functionalize nanomaterials. The synthesised nanomaterials were fully characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED), scanning electron microscopy (SEM), BET specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and thermo gravimetric analysis (TGA). Hot-stage Raman and infrared emission spectroscopy were applied to study the chemical reactions during dehydration and dehydroxylation. The advantage of these techniques is that the changes in molecular structure can be followed in situ and at the elevated temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile and fatigue properties of as-rolled and annealed polycrystalline Cu foils with different thicknesses at the micrometer scale were investigated. Uniaxial tensile testing results showed that with decreasing foil thickness the uniform elongation decreases for both as-rolled and annealed foils, whereas the yield strength and ultimate tensile strength increase for as-rolled foils, but decrease for the annealed foils. For both the as-rolled or annealed foils, bending fatigue resistance decreases with decreasing the foil thickness. Deformation and fatigue damage behaviour of the free-standing foils were characterised as a function of foil thickness. In addition, the fatigue strength of various small-scale Cu foils was compared to understand they physical mechanisms of size effects on mechanical properties of the metallic material at micrometer scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bending and bundling was observed from vertically aligned arrays of ZnO nanowires with flat (0001) top surfaces, which were synthesized using a vapor-phase method without metal catalysts. Sufficient evidence was found to exclude electron-beam bombardment during scanning electron microscopy as a cause for bending and bundling. We attribute the bending and bundling to electrostatic interactions due to charged (0001) polar surfaces, and also discussed the threshold surface charge densities for the bending and bundling based on a simple cantilever-bending model. Some growth features were indicative of the operation of electrostatic interactions during the growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the greatest challenges for the study of photocatalysts is to devise new catalysts that possess high activity under visible light illumination. This would allow the use of an abundant and green energy source, sunlight, to drive chemical reactions. Gold nanoparticles strongly absorb both visible light and UV light. It is therefore possible to drive chemical reactions utilising a significant fraction of full sunlight spectrum. Here we prepared gold nanoparticles supported on various oxide powders, and reported a new finding that gold nanoparticles on oxide supports exhibit significant activity for the oxidation of formaldehyde and methanol in the air at ambient temperature, when illuminated with visible light. We suggested that visible light can greatly enhance local electromagnetic fields and heat gold nanoparticles due to surface plasmon resonance effect which provides activation energy for the oxidation of organic molecules. Moreover, the nature of the oxide support has an important influence on the activity of the gold nanoparticles. The finding reveals the possibility to drive chemical reactions with sunlight on gold nanoparticles at ambient temperature, highlighting a new direction for research on visible light photocatalysts. Gold nanoparticles supported on oxides also exhibit significant dye oxidation activity under visible light irradiation in aqueous solution at ambient temperature. Turnover frequencies of the supported gold nanoparticles for the dye degradation are much higher than titania based photocatalysts under both visible and UV light. These gold photocatalysts can also catalyse phenol degradation as well as selective oxidation of benzyl alcohol under UV light. The reaction mechanism for these photocatalytic oxidations was studied. Gold nanoparticles exhibit photocatalytic activity due to visible light heating gold electrons in 6sp band, while the UV absorption results in electron holes in gold 5d band to oxidise organic molecules. Silver nanoparticles also exhibit considerable visible light and UV light absorption due to surface plasmon resonance effect and the interband transition of 4d electrons to the 5sp band, respectively. Therefore, silver nanoparticles are potentially photocatalysts that utilise the solar spectrum effectively. Here we reported that silver nanoparticles at room temperature can be used to drive chemical reactions when illuminated with light throughout the solar spectrum. The significant activities for dye degradation by silver nanoparticles on oxide supports are even better than those by semiconductor photocatalysts. Moreover, silver photocatalysts also can degrade phenol and drive the oxidation of benzyl alcohol to benzaldehyde under UV light. We suggested that surface plasmon resonance effect and interband transition of silver nanoparticles can activate organic molecule oxidations under light illumination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partition of heavy metals between particulate and dissolve fraction of stormwater primarily depends on the adsorption characteristics of solids particles. Moreover, the bioavailability of heavy metals is also influenced by the adsorption behaviour of solids. However, due to the lack of fundamental knowledge in relation to the heavy metals adsorption processes of road deposited solids, the effectiveness of stormwater management strategies can be limited. The research study focused on the investigation of the physical and chemical parameters of solids on urban road surfaces and, more specifically, on heavy metal adsorption to solids. Due to the complex nature of heavy metal interaction with solids, a substantial database was generated through a series of field investigations and laboratory experiments. The study sites for the build-up pollutant sample collection were selected from four urbanised suburbs located in a major river catchment. Sixteen road sites were selected from these suburbs and represented typical industrial, commercial and residential land uses. Build-up pollutants were collected using a wet and dry vacuum collection technique which was specially designed to improve fine particle collection. Roadside soil samples were also collected from each suburb for comparison with the road surface solids. The collected build-up solids samples were separated into four particle size ranges and tested for a range of physical and chemical parameters. The solids build-up on road surfaces contained a high fraction (70%) of particles smaller than 150ìm, which are favourable for heavy metal adsorption. These solids particles predominantly consist of soil derived minerals which included quartz, albite, microcline, muscovite and chlorite. Additionally, a high percentage of amorphous content was also identified in road deposited solids. In comparing the mineralogical data of surrounding soil and road deposited solids, it was found that about 30% of the solids consisted of particles generated from traffic related activities on road surfaces. Significant difference in mineralogical composition was noted in different particle sizes of build-up solids. Fine solids particles (<150ìm) consisted of a clayey matrix and high amorphous content (in the region of 40%) while coarse particles (>150ìm) consisted of a sandy matrix at all study sites, with about 60% quartz content. Due to these differences in mineralogical components, particles larger than and smaller than 150ìm had significant differences in their specific surface area (SSA) and effective cation exchange capacity (ECEC). These parameters, in turn, exert a significant influence on heavy metal adsorption. Consequently, heavy metal content in >150ìm particles was lower than in the case of fine particles. The particle size range <75ìm had the highest heavy metal content, corresponding with its high clay forming minerals, high organic matter and low quartz content which increased the SSA, ECEC and the presence of Fe, Al and Mn oxides. The clay forming minerals, high organic matter and Fe, Al and Mn oxides create distinct groups of charge sites on solids surfaces and exhibit different adsorption mechanisms and bond strength, between heavy metal elements and charge sites. Therefore, the predominance of these factors in different particle sizes leads to different heavy metal adsorption characteristics. Heavy metals show preference for association with clay forming minerals in fine solids particles, whilst in coarse particles heavy metals preferentially associate with organic matter. Although heavy metal adsorption to amorphous material is very low, the heavy metals embedded in traffic related materials have a potential impact on stormwater quality.Adsorption of heavy metals is not confined to an individual type of charge site in solids, whereas specific heavy metal elements show preference for adsorption to several different types of charge sites in solids. This is attributed to the dearth of preferred binding sites and the inability to reach the preferred binding sites due to competition between different heavy metal species. This confirms that heavy metal adsorption is significantly influenced by the physical and chemical parameters of solids that lead to a heterogeneity of surface charge sites. The research study highlighted the importance of removal of solids particles from stormwater runoff before they enter into receiving waters to reduce the potential risk posed by the bioavailability of heavy metals. The bioavailability of heavy metals not only results from the easily mobile fraction bound to the solids particles, but can also occur as a result of the dissolution of other forms of bonds by chemical changes in stormwater or microbial activity. Due to the diversity in the composition of the different particle sizes of solids and the characteristics and amount of charge sites on the particle surfaces, investigations using bulk solids are not adequate to gain an understanding of the heavy metal adsorption processes of solids particles. Therefore, the investigation of different particle size ranges is recommended for enhancing stormwater quality management practices.