140 resultados para Material specification
Resumo:
This paper draws on a major study the authors conducted for the Australian Government in 2009. It focuses on the diffusion issues surrounding the uptake of sustainable building and construction products in Australia. Innovative sustainable products can minimise the environmental impact during construction, while maximising asset performance, durability and re-use. However, there are significant challenges faced by designers and clients in the selection of appropriate sustainable products in consideration of the integrated design solution, including overall energy efficiency, water conservation, maintenance and durability, low-impact use and consumption. The paper is a review of the current state of sustainable energy and material product innovations in Australia. It examines the system dynamics surrounding these innovations as well as the drivers and obstacles to their diffusion throughout the Australian construction industry. The case product types reviewed comprise: solar energy technology, small wind turbines, advanced concrete technology, and warm-mixed asphalt. The conclusions highlight the important role played by Australian governments in facilitating improved adoption rates. This applies to governments in their various roles, but particularly as clients/owners, regulators, and investors in education, training, research and development. In their role as clients/owners, the paper suggests that government can better facilitate innovation within the construction industry by adjusting specification policies to encourage the uptake of sustainable products. In the role as regulators, findings suggest governments should be encouraging the application of innovative finance options and positive end-user incentives to promote sustainable product uptake. Also, further education for project-based firms and the client/end users about the long-term financial and environmental benefits of innovative sustainable products is required. As more of the economy’s resources are diverted away from business-as-usual and into the use of sustainable products, some project-based firms may face short-term financial pain in re-shaping their businesses. Government policy initiatives can encourage firms make the necessary adjustments to improve innovative sustainable product diffusion throughout the industry.
Resumo:
Transmission smart grids will use a digital platform for the automation of high voltage substations. The IEC 61850 series of standards, released in parts over the last ten years, provide a specification for substation communications networks and systems. These standards, along with IEEE Std 1588-2008 Precision Time Protocol version 2 (PTPv2) for precision timing, are recommended by the both IEC Smart Grid Strategy Group and the NIST Framework and Roadmap for Smart Grid Interoperability Standards for substation automation. IEC 61850, PTPv2 and Ethernet are three complementary protocol families that together define the future of sampled value digital process connections for smart substation automation. A time synchronisation system is required for a sampled value process bus, however the details are not defined in IEC 61850-9-2. PTPv2 provides the greatest accuracy of network based time transfer systems, with timing errors of less than 100 ns achievable. The suitability of PTPv2 to synchronise sampling in a digital process bus is evaluated, with preliminary results indicating that steady state performance of low cost clocks is an acceptable ±300 ns, but that corrections issued by grandmaster clocks can introduce significant transients. Extremely stable grandmaster oscillators are required to ensure any corrections are sufficiently small that time synchronising performance is not degraded.
Resumo:
This article augments Resource Dependence Theory with Real Options reasoning in order to explain time bounds specification in strategic alliances. Whereas prior work has found about a 50/50 split between alliances that are time bound and those that are open-ended, their substantive differences and antecedents are ill understood. To address this, we suggest that the two alliance modes present different real options trade-offs in adaptation to environmental uncertainty: ceteris paribus, time-bound alliances are likely to provide abandonment options over open-ended alliances, but require additional investments to extend the alliance when this turns out to be desirable after formation. Open-ended alliances are likely to provide growth options over open-ended alliances, but they demand additional effort to abandon the alliance if post-formation circumstances so desire. Therefore, we expect time bounds specification to be a function of environmental uncertainty: organizations in more uncertain environments will be relatively more likely to place time bounds on their strategic alliances. Longitudinal archival and survey data collected amongst 39 industry clusters provides empirical support for our claims, which contribute to the recent renaissance of resource dependence theory by specifying the conditions under which organizations choose different time windows in strategic partnering.
Resumo:
Polymer nanocomposites (NC) are fabricated by incorporating well dispersed nanoscale particles within a polymer matrix. This study focuses on elastomeric polyurethane (PU) based nanocomposites, containing organically modified silicates (OMS), as bioactive materials. Nanocomposites incorporating chlorhexidine diacetate as an organic modifier (OM) were demonstrated to be antibacterial with a dose dependence related to both the silicate loading and the loading of OM. When the non-antibacterial OM dodecylamine was used, both cell and platelet adhesion were decreased on the nanocomposite surface. These results suggest that OM is released from the polymer and can impact on cell behaviour at the interface. Nanocomposites have potential use as bioactive materials in a range of biomedical applications.
Resumo:
Most existing requirements engineering approaches focus on the modelling and specification of the IT artefacts ignoring the environment where the application is deployed. Although some requirements engineering approaches consider the stakeholder’s goals, they still focus on the IT artefacts’ specification. However, IT artefacts are embedded in a dynamic organisational environment and their design and specification cannot be separated from the environment’s constant evolution. Therefore, during the initial stages of a requirements engineering process it is advantageous to consider the integration of IT design with organisational design. We proposed the ADMITO (Analysis, Design and Management of IT and Organisations) approach to represent the dynamic relations between social and material entities, where the latter are divided into technological and organisational entities. In this paper we show how by using ADMITO in a concrete case, the Queensland Health Payroll (QHP) case, it is possible to have an integrated representation of IT and organisational design supporting organisational change and IT requirements specification.
Resumo:
This thesis develops a detailed conceptual design method and a system software architecture defined with a parametric and generative evolutionary design system to support an integrated interdisciplinary building design approach. The research recognises the need to shift design efforts toward the earliest phases of the design process to support crucial design decisions that have a substantial cost implication on the overall project budget. The overall motivation of the research is to improve the quality of designs produced at the author's employer, the General Directorate of Major Works (GDMW) of the Saudi Arabian Armed Forces. GDMW produces many buildings that have standard requirements, across a wide range of environmental and social circumstances. A rapid means of customising designs for local circumstances would have significant benefits. The research considers the use of evolutionary genetic algorithms in the design process and the ability to generate and assess a wider range of potential design solutions than a human could manage. This wider ranging assessment, during the early stages of the design process, means that the generated solutions will be more appropriate for the defined design problem. The research work proposes a design method and system that promotes a collaborative relationship between human creativity and the computer capability. The tectonic design approach is adopted as a process oriented design that values the process of design as much as the product. The aim is to connect the evolutionary systems to performance assessment applications, which are used as prioritised fitness functions. This will produce design solutions that respond to their environmental and function requirements. This integrated, interdisciplinary approach to design will produce solutions through a design process that considers and balances the requirements of all aspects of the design. Since this thesis covers a wide area of research material, 'methodological pluralism' approach was used, incorporating both prescriptive and descriptive research methods. Multiple models of research were combined and the overall research was undertaken following three main stages, conceptualisation, developmental and evaluation. The first two stages lay the foundations for the specification of the proposed system where key aspects of the system that have not previously been proven in the literature, were implemented to test the feasibility of the system. As a result of combining the existing knowledge in the area with the newlyverified key aspects of the proposed system, this research can form the base for a future software development project. The evaluation stage, which includes building the prototype system to test and evaluate the system performance based on the criteria defined in the earlier stage, is not within the scope this thesis. The research results in a conceptual design method and a proposed system software architecture. The proposed system is called the 'Hierarchical Evolutionary Algorithmic Design (HEAD) System'. The HEAD system has shown to be feasible through the initial illustrative paper-based simulation. The HEAD system consists of the two main components - 'Design Schema' and the 'Synthesis Algorithms'. The HEAD system reflects the major research contribution in the way it is conceptualised, while secondary contributions are achieved within the system components. The design schema provides constraints on the generation of designs, thus enabling the designer to create a wide range of potential designs that can then be analysed for desirable characteristics. The design schema supports the digital representation of the human creativity of designers into a dynamic design framework that can be encoded and then executed through the use of evolutionary genetic algorithms. The design schema incorporates 2D and 3D geometry and graph theory for space layout planning and building formation using the Lowest Common Design Denominator (LCDD) of a parameterised 2D module and a 3D structural module. This provides a bridge between the standard adjacency requirements and the evolutionary system. The use of graphs as an input to the evolutionary algorithm supports the introduction of constraints in a way that is not supported by standard evolutionary techniques. The process of design synthesis is guided as a higher level description of the building that supports geometrical constraints. The Synthesis Algorithms component analyses designs at four levels, 'Room', 'Layout', 'Building' and 'Optimisation'. At each level multiple fitness functions are embedded into the genetic algorithm to target the specific requirements of the relevant decomposed part of the design problem. Decomposing the design problem to allow for the design requirements of each level to be dealt with separately and then reassembling them in a bottom up approach reduces the generation of non-viable solutions through constraining the options available at the next higher level. The iterative approach, in exploring the range of design solutions through modification of the design schema as the understanding of the design problem improves, assists in identifying conflicts in the design requirements. Additionally, the hierarchical set-up allows the embedding of multiple fitness functions into the genetic algorithm, each relevant to a specific level. This supports an integrated multi-level, multi-disciplinary approach. The HEAD system promotes a collaborative relationship between human creativity and the computer capability. The design schema component, as the input to the procedural algorithms, enables the encoding of certain aspects of the designer's subjective creativity. By focusing on finding solutions for the relevant sub-problems at the appropriate levels of detail, the hierarchical nature of the system assist in the design decision-making process.
Resumo:
The favourable scaffold for bone tissue engineering should have desired characteristic features, such as adequate mechanical strength and three-dimensional open porosity, which guarantee a suitable environment for tissue regeneration. In fact, the design of such complex structures like bone scaffolds is a challenge for investigators. One of the aims is to achieve the best possible mechanical strength-degradation rate ratio. In this paper we attempt to use numerical modelling to evaluate material properties for designing bone tissue engineering scaffold fabricated via the fused deposition modelling technique. For our studies the standard genetic algorithm was used, which is an efficient method of discrete optimization. For the fused deposition modelling scaffold, each individual strut is scrutinized for its role in the architecture and structural support it provides for the scaffold, and its contribution to the overall scaffold was studied. The goal of the study was to create a numerical tool that could help to acquire the desired behaviour of tissue engineered scaffolds and our results showed that this could be achieved efficiently by using different materials for individual struts. To represent a great number of ways in which scaffold mechanical function loss could proceed, the exemplary set of different desirable scaffold stiffness loss function was chosen. © 2012 John Wiley & Sons, Ltd.
Resumo:
This article explores an important temporal aspect of the design of strategic alliances by focusing on the issue of time bounds specification. Time bounds specification refers to a choice on behalf of prospective alliance partners at the time of alliance formation to either pre-specify the duration of an alliance to a specific time window, or to keep the alliance open-ended (Reuer & Ariňo, 2007). For instance, Das (2006) mentions the example of the alliance between Telemundo Network and Mexican Argos Comunicacion (MAC). Announced in October 2000, this alliance entailed a joint production of 1200 hours of comedy, news, drama, reality and novella programs (Das, 2006). Conditioned on the projected date of completing the 1200 hours of programs, Telemundo Network and MAC pre-specified the time bounds of the alliance ex ante. Such time-bound alliances are said to be particularly prevalent in project-based industries, like movie production, construction, telecommunications and pharmaceuticals (Schwab & Miner, 2008). In many other instances, however, firms may choose to keep their alliances open-ended, not specifying a specific time bound at the time of alliance formation. The choice between designing open-ended alliances that are “built to last”, versus time bound alliances that are “meant to end” is important. Seminal works like Axelrod (1984), Heide & Miner (1992), and Parkhe (1993) demonstrated that the choice to place temporal bounds on a collaborative venture has important implications. More specifically, collaborations that have explicit, short term time bounds (i.e. what is termed a shorter “shadow of the future”) are more likely to experience opportunism (Axelrod, 1984), are more likely to focus on the immediate present (Bakker, Boros, Kenis & Oerlemans, 2012), and are less likely to develop trust (Parkhe, 1993) than alliances for which time bounds are kept indeterminate. These factors, in turn, have been shown to have important implications for the performance of alliances (e.g. Kale, Singh & Perlmutter, 2000). Thus, there seems to be a strong incentive for organizations to form open-ended strategic alliances. And yet, Reuer & Ariňo (2007), one of few empirical studies that details the prevalence of time-bound and open-ended strategic alliances, found that about half (47%) of the alliances in their sample were time bound, the other half were open-ended. What conditions, then, determine this choice?
Resumo:
Soufrière Hills volcano, Montserrat, has been erupting since 1995. During the current eruption, a large part of the material produced by the volcano has been transported into the sea, modifying the morphology of the submarine flanks of the volcano. We present a unique set of swath bathymetric data collected offshore from Montserrat in 1999, 2002 and 2005. From 1999 to 2002, pyroclastic flows associated with numerous dome collapses entered the sea to produce 100 Mm3 deposit. From 2002 to 2005, the 290 Mm3 submarine deposit is mainly from the 12–13 July 2003 collapse. These data allow us to estimate that, by May 2005, at least 482 Mm3 of material had been deposited on the sea floor since 1995. We compare on-land characteristics and volumes of dome collapse events with the submarine deposits and propose a new analysis of their emplacement on the submarine flanks of the volcano. The deposition mechanism shows a slope dependence, with the maximum thickness of deposit before the break in the slope, probably because of the type of the dense granular flow involved. We conclude that from 1995 to 2005 more than 75% of the erupted volume entered the sea.
Resumo:
Rates of dehydration/rehydration are important quality parameters for dried products. Theoretically, if there are no adverse effects on the integrity of the tissue structure, it should absorb water to the same moisture content of the initial product before drying.The purpose of this work is to semi-automate the process of detection of cell structure boundaries as a food is dehydrated and rehydrated. This will enable food materials researchers to quantify changes to material’s structure as these processes take place. Images of potato cells as they were dehydrated and rehydrated were taken using an electron microscope. Cell boundaries were detected using an image processing algorithm. Average cell area and perimeter at each stage of dehydration were calculated and plotted versus time. The results show that the algorithm can successfully identify cell boundaries.
Resumo:
Bioactive materials with osteostimulation properties are of great importance to promote osteogenic differentiation of human bone marrow stromal cells (hBMSCs) for potential bone regeneration. We have recently synthesized nagelschmidtite (NAGEL, Ca7Si2P2O16) ceramic powders which showed excellent apatite-mineralization ability. The aim of this study was to investigate the interaction of hBMSCs with NAGEL bioceramic bulks and their ionic extracts, and to explore the osteostimulation properties of NAGEL bioceramics and the possible molecular mechanism. The cell attachment, proliferation, bone-related gene expression (ALP, OPN and OCN) and WNT signalling pathways (WNT3a, FZD6, AXIN2 and CTNNB) of hBMSCs cultured on NAGEL bioceramic disks were systematically studied. We further investigated the biological effects of ionic products from NAGEL powders on cell proliferation and osteogenic differentiation of hBMSCs by culturing cells with NAGEL extracts. Furthermore, the effect of NAGEL bioceramics on the osteogenic differentiation in hBMSCs was also investigated with the addition of cardamonin, a WNT inhibitor. The results showed that NAGEL bioceramic disks supported the attachment and proliferation of hBMSCs, and significantly enhanced the bone-related gene expression and WNT signalling pathway of hBMSCs, compared to conventional beta-tricalcium phosphate (β-TCP) bioceramic disks and blank controls. The ionic products from NAGEL powders also significantly promoted the proliferation, bone and WNT-related gene expression of hBMSCs. It was also identified that NAGEL bioceramics could bypass the action of the WNT inhibitor (10 μM) to stimulate the selected osteogenic genes in hBMSCs. Our results suggest that NAGEL bioceramics possess excellent in vitro osteostimulation properties. The possible mechanism for the osteostimulation may be directly related to the released Si, Ca and P-containing ionic products from NAGEL bioceramics which activate bone-related gene expression and WNT signalling pathway of hBMSCs. The present study suggests that NAGEL bioceramics are a potential bone regeneration material with significant osteostimulation capacity.
Resumo:
A new set of primitive extraterrestrial materials collected in the Earth's stratosphere include Chondritic Porous Aggregates (CPA's) [1]. CPAs have a complex and variable mineralogy [1-3] that include 'organic compounds' [4,5] and poorly graphitised carbon (PGC)[6]. This study presents a continuation of our detailed Analytical Electron Microscope study on carbon-rich CPA W7029*A from the JSC Cosmic Dust Collection. This CPA is an uncontaminated sample that survived atmospheric entry without appreciable alteration [7] and which contains ~44% carbonaceous material. The carbonaceous composition of selected particles was confirmed by Electron Energy Loss Spectroscopy and Selected Area Electron Diffraction (SAED). Possible carbonaceous contaminants introduced by specimen preparation techniques are easily recognised from indigenous CPA carbon particles [8] and do not bias our interpretations.