113 resultados para Marine Animals
Resumo:
High-precision analysis using accelerator mass spectrometry (AMS) was performed upon known-age Holocene and modern, pre-bomb coral samples to generate a marine reservoir age correction value (ΔR) for the Houtman-Abrolhos Archipelago (28.7°S, 113.8°E) off the Western Australian coast. The mean ΔR value calculated for the Abrolhos Islands, 54 ± 30 yr (1σ) agrees well with regional ΔR values for Leeuwin Current source waters (N-NW Australia-Java) of 60 ± 38. The Abrolhos Islands show little variation with ΔR values of the northwestern and north Australian coast, underlining the dominance of the more equilibrated western Pacific-derived waters of the Leeuwin Current over local upwelling. The Abrolhos Islands ΔR values have remained stable over the last 2896 yr cal BP, being also attributed to the Leeuwin Current and the El Niño Southern Oscillation (ENSO) signal during this period. Expected future trends will be a strengthening of the teleconnection of the Abrolhos Islands to the climatic patterns of the equatorial Pacific via enhanced ENSO and global warming activity strengthening the Leeuwin Current. The possible effect upon the trend of future ΔR values may be to maintain similar values and an increase in stability. However, warming trends of global climate change may cause increasing dissimilarity of ΔR values due to the effects of increasing heat stress upon lower-latitude coral communities.
Of dogs, fish, birds and turds : the social construction of sewage pollution by recreational boaters
Resumo:
Animals are often used as ‘evidence’ of marine pollution. Take for instance the ubiquitous images of miserable oil-soaked marine birds following high profile oil spills such as the Exxon Valdez, Pacific Adventurer and Deepwater Horizon incidents or the images of bloated floating fish carcasses which are used to signal the presence of toxic pollutants. In recent years waste discharges from vessels have come under increased public and regulatory scrutiny both in Australia and around the world. International, regional, national and local restrictions are becoming more stringent for high profile marine pollutants such as oil as well as previously overlooked vessel-sourced pollutants such as sewage. Drawing upon media reports and recreational boater responses to government attempts to regulate the discharge of sewage from recreational vessels, this paper considers the important role played by animals in constructions of marine pollution by sewage and attributions of blame for this pollution. Specifically, this study found that recreational boat owners disputed claims their sewage management practices posed an environmental threat arguing that the sewage discharged was readily and eagerly consumed by fish in the receiving environment. Boat owners also argued that increased levels of bacteria which indicate the presence of faeces within the marine environment could be directly attributed to the excrement of marine mammals and birds or were the result of dog faeces being washed through municipal storm water systems rather than the result of vessel discharges. By contrast the contamination of oysters was provided as evidence of sewage pollution by other stakeholders.
Resumo:
In September 1998, an outbreak of gastroenteritis occurred in a coastal Aboriginal community in the Northern Territory over a seven day period. An investigation was conducted by the Center for Disease Control, Territory Health Services. Thirty-six cases were detected and 17% (n=6) were hospitalized. Salmonella chester was isolated from eight of nine stool specimens. Sixty-two percent of cases interviewed (n=28) reported consumption of a green turtle (Chelonia mydas) within a median of 24 hours prior to onset of illness. Of the remainder, all but two were contacts of other cases. Salmonella chester was isolated from a section of partially cooked turtle meat. There are no previous published reports of salmonellosis associated with consumption of sea turtles despite them being a popular food source in coastal communities in the Pacific.
Resumo:
On 18 September 1998 the Centre for Disease Control (CDC), Darwin was notified of an outbreak of gastroenteritis predominantly affecting adults in a Top End coastal community. There had been no previous presentations to the community clinic in the month of September with vomiting or diarrhoea. On 14 September, a green turtle (Chledonia mydas) was cooked and distributed throughout the community. Water collected from a water hole near the community (known as the aerator) was used as drinking water at the cook site and to cook the meat. In addition, there were reports that kava, a plant derived tranquilliser,1 had been consumed the night before using water from the same source. An investigation was conducted to determine the aetiology and source and to instigate prevention and control measures.
Resumo:
Samples of sea water contain phytoplankton taxa in varying amounts, and marine scientists are interested in the relative abundance of each taxa. Their relative biomass can be ascertained indirectly by measuring the quantity of various pigments using high performance liquid chromatography. However, the conversion from pigment to taxa is mathematically non trivial as it is a positive matrix factorisation problem where both matrices are unknown beyond the level of initial estimates. The prior information on the pigment to taxa conversion matrix is used to give the problem a unique solution. An iteration of two non-negative least squares algorithms gives satisfactory results. Some sample analysis of data indicates prospects for this type of analysis. An alternative more computationally intensive approach using Bayesian methods is discussed.
Resumo:
This paper describes the design and implementation of a wireless neural telemetry system that enables new experimental paradigms, such as neural recordings during rodent navigation in large outdoor environments. RoSco, short for Rodent Scope, is a small lightweight user-configurable module suitable for digital wireless recording from freely behaving small animals. Due to the digital transmission technology, RoSco has advantages over most other wireless modules of noise immunity and online user-configurable settings. RoSco digitally transmits entire neural waveforms for 14 of 16 channels at 20 kHz with 8-bit encoding which are streamed to the PC as standard USB audio packets. Up to 31 RoSco wireless modules can coexist in the same environment on non-overlapping independent channels. The design has spatial diversity reception via two antennas, which makes wireless communication resilient to fading and obstacles. In comparison with most existing wireless systems, this system has online user-selectable independent gain control of each channel in 8 factors from 500 to 32,000 times, two selectable ground references from a subset of channels, selectable channel grounding to disable noisy electrodes, and selectable bandwidth suitable for action potentials (300 Hz–3 kHz) and low frequency field potentials (4 Hz–3 kHz). Indoor and outdoor recordings taken from freely behaving rodents are shown to be comparable to a commercial wired system in sorting for neural populations. The module has low input referred noise, battery life of 1.5 hours and transmission losses of 0.1% up to a range of 10 m.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated marine vehicles with control allocation. The proposed design is based on a combined position and velocity loops in a multi-variable anti-windup implementation together with a control allocation mapping. The vehicle modelling is considered with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. We derive analytical tuning rules based on requirements of closed-loop stability and performance. The anti- windup implementation of the controller is obtained by mapping the actuator-force constraint set into a constraint set for the generalized forces. This approach ensures that actuation capacity is not violated by constraining the generalized control forces; thus, the control allocation is simplified since it can be formulated as an unconstrained problem. The mapping can also be modified on-line based on actuator availability to provide actuator-failure accommodation. We provide a proof of the closed-loop stability and illustrate the performance using simulation scenarios for an open-frame underwater vehicle.
Resumo:
The Surface Ocean Aerosol Production (SOAP) study was undertaken in February/March 2012 in the biologically active waters of the Chatham Rise, NZ. Aerosol hygroscopicity and volatility were examined with a volatility hygroscopicity tandem differential mobility analyser. These observations confirm results from other hygroscopicity-based studies that the dominant fraction of the observed remote marine particles were non-sea salt sulfates. Further observations are required to clarify the influences of seawater composition, meteorology and analysis techniques seasonally across different ocean basins.
Resumo:
We identify the 10 major terrestrial and marine ecosystems in Australia most vulnerable to tipping points, in which modest environmental changes can cause disproportionately large changes in ecosystem properties. To accomplish this we independently surveyed the coauthors of this paper to produce a list of candidate ecosystems, and then refined this list during a 2-day workshop. The list includes (1) elevationally restricted mountain ecosystems, (2) tropical savannas, (3) coastal floodplains and wetlands, (4) coral reefs, (5) drier rainforests, (6) wetlands and floodplains in the Murray-Darling Basin, (7) the Mediterranean ecosystems of southwestern Australia, (8) offshore islands, (9) temperate eucalypt forests, and (10) salt marshes and mangroves. Some of these ecosystems are vulnerable to widespread phase-changes that could fundamentally alter ecosystem properties such as habitat structure, species composition, fire regimes, or carbon storage. Others appear susceptible to major changes across only part of their geographic range, whereas yet others are susceptible to a large-scale decline of key biotic components, such as small mammals or stream-dwelling amphibians. For each ecosystem we consider the intrinsic features and external drivers that render it susceptible to tipping points, and identify subtypes of the ecosystem that we deem to be especially vulnerable. © 2011 Elsevier Ltd.
Resumo:
Marine craft (surface vessels, underwater vehicles, and offshore rigs) perform operations that require tight motion control. During the past three decades, there has been an increasing demand for higher accuracy and reliability of marinecraft motion control systems. Today, these control systems are an enabling factor for single and multicraft marine operations. This chapter provides an overview of the main characteristics and design aspects of motion control systems for marine craft. In particular, we discuss the architecture of the control system, the functionality of its main components, the characteristics of environmental disturbances, control objectives, and essential aspects of modeling and motion control design.
Resumo:
Dynamic positioning of marine craft refers to the use of the propulsion system to regulate the vessel position and heading. This type of motion control is commonly used in the offshore industry for surface vessels, and it is also used for some underwater vehicles. In this paper, we use a port-Hamiltonian framework to design a novel nonlinear set-point-regulation controller with integral action. The controller handles input saturation and guarantees internal stability, rejection of unknown constant disturbances, and (integral-)input-to-state stability.
Resumo:
The motion response of marine structures in waves can be studied using finite-dimensional linear-time-invariant approximating models. These models, obtained using system identification with data computed by hydrodynamic codes, find application in offshore training simulators, hardware-in-the-loop simulators for positioning control testing, and also in initial designs of wave-energy conversion devices. Different proposals have appeared in the literature to address the identification problem in both time and frequency domains, and recent work has highlighted the superiority of the frequency-domain methods. This paper summarises practical frequency-domain estimation algorithms that use constraints on model structure and parameters to refine the search of approximating parametric models. Practical issues associated with the identification are discussed, including the influence of radiation model accuracy in force-to-motion models, which are usually the ultimate modelling objective. The illustration examples in the paper are obtained using a freely available MATLAB toolbox developed by the authors, which implements the estimation algorithms described.
Resumo:
This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.
Resumo:
In extreme weather conditions, thrusters on ships and rigs may be subject to severe thrust losses caused by ventilation and in-and-out-of-water events. When a thruster ventilates, air is sucked down from the surface and into the propeller. In more severe cases, parts of or even the whole propeller can be out of the water. These losses vary rapidly with time and cause increased wear and tear in addition to reduced thruster performance. In this paper, a thrust allocation strategy is proposed to reduce the effects of thrust losses and to reduce the possibility of multiple ventilation events. This thrust allocation strategy is named antispin thrust allocation, based on the analogous behavior of antispin wheel control of cars. The proposed thrust allocation strategy is important for improving the life span of the propulsion system and the accuracy of positioning for vessels conducting station keeping in terms of dynamic positioning or thruster-assisted position mooring. Application of this strategy can result in an increase of operational time and, thus, increased profitability. The performance of the proposed allocation strategy is demonstrated with experiments on a model ship.
Resumo:
This paper addresses the problem of joint identification of infinite-frequency added mass and fluid memory models of marine structures from finite frequency data. This problem is relevant for cases where the code used to compute the hydrodynamic coefficients of the marine structure does not give the infinite-frequency added mass. This case is typical of codes based on 2D-potential theory since most 3D-potential-theory codes solve the boundary value associated with the infinite frequency. The method proposed in this paper presents a simpler alternative approach to other methods previously presented in the literature. The advantage of the proposed method is that the same identification procedure can be used to identify the fluid-memory models with or without having access to the infinite-frequency added mass coefficient. Therefore, it provides an extension that puts the two identification problems into the same framework. The method also exploits the constraints related to relative degree and low-frequency asymptotic values of the hydrodynamic coefficients derived from the physics of the problem, which are used as prior information to refine the obtained models.