640 resultados para Mandatory Safety Belt Usage.
Resumo:
Objective-To establish the demographic, health status and insurance determinants of pre-hospital ambulance non-usage for patients with emergency medical needs. Methods-Triage category, date of birth, sex, marital status, country of origin, method and time of arrival, ambulance insurance status, diagnosis, and disposal were collected for all patients who presented over a four month period (n=10 229) to the emergency department of a major provincial hospital. Data for patients with urgent (n=678) or critical care needs (n=332) who did not use pre-hospital care were analysed using Poisson regression. Results-Only a small percentage (6.6%) of the total sample were triaged as having urgent medical needs or critical care needs (3.2%). Predictors of usage for those with urgent care needs included age greater than 65 years (prevalence ratio (PR)=0.54; 95% confidence interval (CI)= 0.35 to 0.83), being admitted to intensive care or transferred to another hospital (PR=0.62; 95% CI=0.44 to 0.89) or ward (PR=0.72; 95% CI=0.56 to 0.93) and ambulance insurance status (PR=0.67; 95% CI=052 to 0.86). Sex, marital status, time of day and country of origin were not predictive of usage and non-usage. Predictors of usage for those with critical care needs included age 65 years or greater (PR=0.45; 95% CI=0.25 to 0.81) and a diagnosis of trauma (PR=0.49; 95% CI=0.26 to 0.92). A non-English speaking background was predictive of non-usage (PR=1.98; 95% CI=1.06 to 3.70). Sex, marital status, time of day, triage and ambulance insurance status were not predictive of non-usage. Conclusions-Socioeconomic and medical factors variously influence ambulance usage depending on the severity or urgency of the medical condition. Ambulance insurance status was less of an influence as severity of condition increased suggesting that, at a critical level of urgency, patients without insurance are willing to pay for a pre-hospital ambulance service.
Resumo:
With the current National Road Safety Strategy [1] coming to the end of its term, it is timely to consider ways in which the next iteration of this strategy can be enhanced. Strategic planning should be a cyclic process in which learning and adaptation are just as important as planning and implementation. It will always be the case that some actions are not as effective as expected, or that barriers to effective implementation will emerge. Rather than being setbacks, these are opportunities for learning about the validity of our assumptions. They are also opportunities for us to adapt to meet unanticipated or emerging challenges. One of the positive aspects of the implementation of the first and second National Road Safety Strategies has been the willingness of road safety agencies to critically assess progress and to identify where and how actions would be better focused. This has been reflected in the evolving nature of the periodic National Road Safety Action Plans. As the decade of the current Strategy reaches an end, there is a need to take this process further, and undertake a thorough critical evaluation of the Strategy development and implementation. While not an attempt to be exhaustive, the following article will identify some key priorities for consideration as part of this process.
Resumo:
The importance of designing sustainable buildings is gaining greater acceptance worldwide. Evidence of this is how regulators are incorporating sustainable design principles into building regulations and requirements. The aim being to increase the number of sustainable buildings and move from a traditional voluntary compliance to one that is mandatory. However, developing regulations that actually achieve these aims can be a difficult exercise. Several countries in South East Asia, such as Singapore and Malaysia, have performance based building regulations that are supplemented by prescriptive measures for achieving the desired performance. Australia too has similar building regulations and has had energy efficiency regulations within the Building Code of Australia for over a decade. This paper explores some of the difficulties and problems that Australian regulators have experienced with the performance-based method and the prescriptive or “deemed-to-comply” method and measures that have been taken to try and overcome these problems. These experiences act as a useful guide to all regulators considering the incorporation of sustainable design measures into their countries building regulations. The paper also speculates on future environmental requirements being incorporated into regulations, including the possibility of non-residential buildings being required to meet minimum energy efficiency requirements, and the possible systems that would need to be in place before such requirements were included. Finally, the paper looks at a possible way forward using direct assessment from electronic designs and introduces several software tools that are currently being developed that move towards achieving this goal. Keywords: Sustainable buildings, Performance-based, Regulations, Energy efficiency, Assessment tools.
Resumo:
There is evidence that many heating, ventilating & air conditioning (HVAC) systems, installed in larger buildings, have more capacity than is ever required to keep the occupants comfortable. This paper explores the reasons why this can occur, by examining a typical brief/design/documentation process. Over-sized HVAC systems cost more to install and operate and may not be able to control thermal comfort as well as a “right-sized” system. These impacts are evaluated, where data exists. Finally, some suggestions are developed to minimise both the extent of, and the negative impacts of, HVAC system over-sizing, for example: • Challenge “rules of thumb” and/or brief requirements which may be out of date. • Conduct an accurate load estimate, using AIRAH design data, specific to project location, and then resist the temptation to apply “safety factors • Use a load estimation program that accounts for thermal storage and diversification of peak loads for each zone and air handling system. • Select chiller sizes and staged or variable speed pumps and fans to ensure good part load performance. • Allow for unknown future tenancies by designing flexibility into the system, not by over-sizing. For example, generous sizing of distribution pipework and ductwork will allow available capacity to be redistributed. • Provide an auxiliary tenant condenser water loop to handle high load areas. • Consider using an Integrated Design Process, build an integrated load and energy use simulation model and test different operational scenarios • Use comprehensive Life Cycle Cost analysis for selection of the most optimal design solutions. This paper is an interim report on the findings of CRC-CI project 2002-051-B, Right-Sizing HVAC Systems, which is due for completion in January 2006.
Resumo:
The Australian construction industry is moving towards the implementation of a voluntary code of practice (VCP) for occupational health and safety (OHS). The evidence suggests that highly-visible clients and project management firms, in addition to their subcontractors, will embrace such a code, while smaller firms not operating in high-profile contracting regimes may prove reticent. This paper incorporates qualitative data from a research project commissioned by Engineers Australia and supported by the Australian Contractors’ Association, Property Council of Australia, Royal Australian Institute of Architects, Association of Consulting Engineers Australia, Australian Procurement and Construction Council, Master Builders Australia and the Australian CRC for Construction Innovation. The paper aims to understand the factors that facilitate or prevent the uptake of the proposed VCP by smaller firms, together with pathways to adoption.
Resumo:
The Australian construction industry, reflecting a global trend, is moving towards the implementation of a voluntary code of practice (hereafter VCP) for occupational health and safety. The evidence suggests that highlyvisible clients and project management firms, in addition to their subcontractors, look set to embrace such a code. However, smaller firms not operating in high-profile contracting regimes may prove reticent to adopt a VCP. This paper incorporates qualitative data from a high-profile research project commissioned by Engineers Australia and supported by the Australian Contractors’ Association, Property Council of Australia, Royal Australian Institute of Architects, Association of Consulting Engineers Australia, Australian Procurement and Construction Council, Master Builders Australia and the Australian CRC for Construction Innovation. The paper aims to understand the factors that facilitate or prevent the uptake of the VCP by smaller firms, together with pathways to the adoption of a VCP by industry.
Resumo:
The majority of Australian construction firms are small businesses, with 97% of general construction businesses employing less than 20 employees and 85% employing less than five employees (Lin and Mills, 2001; Lingard and Holmes, 2001). The Australian Bureau of Statistics’ definition of a small to medium enterprise was used for the purpose of this study (McLennan, 2000). This included small business employing less than twenty people and medium business employing less than 200 people. Although small to medium enterprises (SME) make up the major share of construction organisations in Australia, there is a paucity of published research in relation to occupational health and safety (OHS) issues for this group. Typically, SME organisations “are frequently undercapitalized and depend on continuous cash flow for their continued business” (Cole, 2003; 12). Research by Lin and Mills (2001) indicates that these factors influence the smaller operators’ ability and motivation to achieve high levels of OHS compared to larger firms which tend to integrate OHS into their management systems. According to Lin and Mills (2001; 137) small firms “do not feel the need to focus on OHS in their management systems, instead they often believe that the control of risk is the responsibility of employees”. This report documents findings from a qualitative research study that examined SME organisations’ views of a newly developed voluntary code of practice (VCOP), and ways in which they might implement the code in their businesses. The research also explored respondents’ awareness of current safety issues in industry in the context of their personal experiences.
Resumo:
In Australia, an average 49 building and construction workers have been killed at work each year since 1997-98. Building/construction workers are more than twice as likely to be killed at work, than the average worker in all Australian industries. The ‘Safer Construction’ project, funded by the CRC-Construction Innovation and led by a task force comprising representatives of construction clients, designers and constructors, developed a Guide to Best Practice for Safer Construction. The Guide, which was informed by research undertaken at RMIT University, Queensland University of Technology and Curtin University, establishes broad principles for the improvement of safety in the industry and provides a ‘roadmap’ for improvement based upon lifecycle stages of a building/construction project. Within each project stage, best practices for the management of safety are identified. Each best practice is defined in terms of the recommended action, its key benefits, desirable outcomes, performance measures and leadership. ‘Safer Construction’ practices are identified from the planning to commissioning stages of a project. The ‘Safer Construction’ project represents the first time that key stakeholder groups in the Australian building/construction industry have worked together to articulate best practice and establish an appropriate basis for allocating (and sharing) responsibility for project safety performance.
Resumo:
Community awareness and the perception on the traffic noise related health impacts have increased significantly over the last decade resulting in a large volume of public inquiries flowing to Road Authorities for planning advice. Traffic noise management in the urban environment is therefore becoming a “social obligation”, essentially due to noise related health concerns. Although various aspects of urban noise pollution and mitigation have been researched independently, an integrated approach by stakeholders has not been attempted. Although the current treatment and mitigation strategies are predominantly handled by the Road Agencies, a concerted effort by all stakeholders is becoming mandatory for effective and tangible outcomes in the future. A research project is underway a RMIT University, Australia, led by the second author to consider the use of “hedonic pricing” for alternative noise amelioration treatments within the road reserve and outside the road reserve. The project aims to foster a full range noise abatement strategy encompassing source, path and noise receiver. The benefit of such a study would be to mitigate the problem where it is most effective and would defuse traditional “authority” boundaries to produce the optimum outcome. The project is conducted in collaboration with the Department of Main Roads Queensland, Australia and funded by the CRC for Construction Innovation. As part of this study, a comprehensive literature search is currently underway to investigate the advancements in community health research, related to environmental noise pollution, and the advancements in technical and engineering research in mitigating the issue. This paper presents the outcomes of this work outlining state of the art, national and international good practices and gap analysis to identify major anomalies and developments.
Resumo:
Project Diagnostics is a tool for construction industry stakeholders wishing to improve project delivery and outcomes. This software identifies areas of poor project health, then establishes probable root causes and provides suggested remedial measures. Its focus is to act as an advanced warning system for construction projects that are failing to meet predetermined objectives based on the critical success factors (CSFs) of cost, time, quality, safety, relationships, environment and stakeholder value.
Resumo:
Statistics indicate that the percentage of fatal industrial accidents arising from repair, maintenance, minor alteration and addition (RMAA) works in Hong Kong was disturbingly high and was over 56% in 2006. This paper provides an initial report of a research project funded by the Research Grants Council (RGC) of the HKSAR to address this safety issue. The aim of this study is to scrutinize the causal relationship between safety climate and safety performance in the RMAA sector. It aims to evaluate the safety climate in the RMAA sector; examine its impacts on safety performance, and recommend measures to improve safety performance in the RMAA sector. This paper firstly reports on the statistics of construction accidents arising from RMAA works. Qualitative and quantitative research methods applied in conducting the research are dis-cussed. The study will critically review these related problems and provide recommendations for improving safety performance in the RMAA sector.
Resumo:
Due to the popularity of modern Collaborative Virtual Environments, there has been a related increase in their size and complexity. Developers therefore need visualisations that expose usage patterns from logged data, to understand the structures and dynamics of these complex environments. This chapter presents a new framework for the process of visualising virtual environment usage data. Major components, such as an event model, designer task model and data acquisition infrastructure are described. Interface and implementation factors are also developed, along with example visualisation techniques that make use of the new task and event model. A case study is performed to illustrate a typical scenario for the framework, and its benefits to the environment development team.
Resumo:
Water-filled portable road safety barriers are a common fixture in road works, however their use of water can be problematic, both in terms of the quantity of water used and the transportation of the water to the installation site. This project aims to develop a new design of portable road safety barrier, which will make novel use of composite and foam materials in order to reduce the barrier’s reliance on water in order to control errant vehicles. The project makes use of finite element (FE) techniques in order to simulate and evaluate design concepts. FE methods and models that have previously been tested and validated will be used in combination in order to provide the most accurate numerical simulations available to drive the project forward. LS-DYNA code is as highly dynamic, non-linear numerical solver which is commonly used in the automotive and road safety industries. Several complex materials and physical interactions are to be simulated throughout the course of the project including aluminium foams, composite laminates and water within the barrier during standardised impact tests. Techniques to be used include FE, smoothed particle hydrodynamics (SPH) and weighted multi-parameter optimisation techniques. A detailed optimisation of several design parameters with specific design goals will be performed with LS-DYNA and LS-OPT, which will require a large number of high accuracy simulations and advanced visualisation techniques. Supercomputing will play a central role in the project, enabling the numerous medium element count simulations necessary in order to determine the optimal design parameters of the barrier to be performed. Supercomputing will also allow the development of useful methods of visualisation results and the production of highly detailed simulations for end-product validation purposes. Efforts thus far have been towards integrating various numerical methods (including FEM, SPH and advanced materials models) together in an efficient and accurate manner. Various designs of joining mechanisms have been developed and are currently being developed into FE models and simulations.
Resumo:
Road crashes are now the most common cause of work-related injury, death and absence in a number of countries. Given the impact of workrelated driving crashes on social and economic aspects of business and the community, workrelated road safety and risk management has received increasing attention in recent years. However, limited academic research has progressed on improving safety within the work-related driving sector. The aim of this paper is to present a review of work-related driving safety research to date, and provide an intervention framework for the future development and implementation of workrelated driving safety intervention strategies.
Resumo:
Participating in regular physical activity is encouraged following breast cancer (BC) treatment, except for those who have subsequently developed lymphoedema. We designed a randomised controlled trial to investigate the effect of participating in a supervised, mixed-type, moderate-intensity exercise program among women with lymphoedema following breast cancer. Women <76 years who had completed BC treatment at least six months prior and subsequently developed unilateral, upper-limb lymphoedema were randomly allocated to an intervention (n=16) or control (n=16) group. The intervention group (IG) participated in 20 supervised group exercise sessions over 12 weeks, while the control group (CG) was instructed to continue habitual activities. Lymphoedema status was assessed by bioimpedance spectroscopy (impedance ratio between limbs) and perometry (volume difference between limbs). Mean baseline measures were similar for the IG (1.13+0.15 and 337+307ml, respectively) and CG (1.13+0.15 and 377+416ml, respectively) and no changes were observed over time. However, 2 women in the IG no longer had evidence of lymphoedema by study end. Average attendance was over 70% of supervised sessions, and there were no withdrawals. The results indicate that, at worst, exercise does not exacerbate secondary lymphoedema. Women with secondary lymphoedema should be encouraged to be physically active, optimising their physical and psychosocial recovery.