49 resultados para Macroeconomic variables
Resumo:
A class of growth models incorporating time-dependent factors and stochastic perturbations are introduced. The proposed model includes the existing growth models used in fisheries as special cases. Particular attention is given to growth of a population (in average weight or length) from which observations are taken randomly each time and the analysis of tag-recapture data. Two real data sets are used for illustration: (a) to estimate the seasonal effect and population density effect on growth of farmed prawn (Penaeus monodon) from weight data and (b) to assess the effect of tagging on growth of barramundi (Lates calcarifer)
Resumo:
The von Bertalanffy growth model is extended to incorporate explanatory variables. The generalized model includes the switched growth model and the seasonal growth model as special cases, and can also be used to assess the tagging effect on growth. Distribution-free and consistent estimating functions are constructed for estimation of growth parameters from tag-recapture data in which age at release is unknown. This generalizes the work of James (1991, Biometrics 47 1519-1530) who considered the classical model and allowed for individual variability in growth. A real dataset from barramundi (Lates calcarifer) is analysed to estimate the growth parameters and possible effect of tagging on growth.
Resumo:
Aim An effective catch in sculling is a critical determinant of boat velocity. This study used rowers’ performance-based judgments to compare three measures of catch slip efficiency. Two questions were addressed: (1) would rower-judged Yes strokes be faster than No strokes? and (2) which method of quantifying catch slip best reflected these judgements? Methods Eight single scullers performed two 10-min blocks of sub maximal on-water rowing at 20 strokes per minute. Every 30 s, rowers reported either Yes or No about the quality of their stroke at the catch. Results It was found that Yes strokes identified by rowers had, on average, a moderate effect advantage over No strokes with a standardised effect size of 0.43. In addition, a quicker time to positive acceleration best reflected the change in performance; where the standardised mean difference score of 0.57 for time to positive acceleration was larger than the scores of 0.47 for time to PowerLine force, and 0.35 for time to 30% peak pin force catch slip measures. For all eight rowers, Yes strokes corresponded to time to positive acceleration occurring earlier than No strokes. Conclusion Rower judgements about successful strokes was linked to achieving a quicker time to positive acceleration, and may be of the most value in achieving a higher average boat velocity.
Resumo:
High Intensity Exercise (HIE) stimulates greater physiological remodeling when compared to workload matched low-moderate intensity exercise. This study utilized an untargeted metabolomics approach to examine the metabolic perturbations that occur following two workload matched supramaximal low volume HIE trials. In a randomized order, 7 untrained males completed two exercise protocols separated by one week; 1) HIE150%: 30 x 20s cycling at 150% VO2peak, 40s passive rest; 2) HIE300%: 30 x 10s cycling at 300% VO2peak, 50 s passive rest. Total exercise duration was 30 minutes for both trials. Blood samples were taken at rest, during and immediately following exercise and at 60 minutes post exercise. Gas chromatography-mass spectrometry (GC-MS) analysis of plasma identified 43 known metabolites of which 3 demonstrated significant fold changes (HIE300% compared to the HIE150% value) during exercise, 14 post exercise and 23 at the end of the recovery period. Significant changes in plasma metabolites relating to lipid metabolism [fatty acids: dodecanoate (p=0.042), hexadecanoate (p=0.001), octadecanoate (p=0.001)], total cholesterol (p=0.001), and glycolysis [lactate (p=0.018)] were observed following exercise and during the recovery period. The HIE300% protocol elicited greater metabolic changes relating to lipid metabolism and glycolysis when compared to HIE150% protocol. These changes were more pronounced throughout the recovery period rather than during the exercise bout itself. Data from the current study demonstrate the use of metabolomics to monitor intensity-dependent changes in multiple metabolic pathways following exercise. The small sample size indicates a need for further studies in a larger sample cohort to validate these findings.