149 resultados para MATRIX FACTORIZATION
Resumo:
The great male Aussie cossie is growing spots. The ‘dick’ tog, as it is colloquially referred to, is linked to Australia’s national identify with overtly masculine bronzed Aussie bodies clothed in this iconic apparel. Yet the reality is our hunger for worshiping the sun and the addiction to a beach lifestyle is tempered by the pragmatic need for neck-to-knee, or more apt head-to-toe, swimwear. Spotty Dick is an irreverent play on male swimwear – it experiments with alternate modes to sheath the body with Lyrca in order to protect it from searing UV’s and at the same time light-heartedly fools around with texture and pattern; to be specific, black Scharovsky crystals, jewelled in spot patterns - jewelled clothing is not characteristically aligned to menswear and even less so to the great Aussie cossie. The crystals form a matrix of spots that attempt to provoke a sense of mischievousness aligned to the Aussie beach larrikin. Ironically, spot patterns are in itself a form of a parody, as prolonged sun exposure ages the skin and sun spots can occur if appropriate sun protection is not used. ‘Spotty Dick’ – a research experiment to test design suitability for the use of jewelled spot matrix patterns for UV aware men’s swimwear. The creative work was paraded at 56 shows, over a 2 week period, and an estimated 50,000 people viewed the work.
Resumo:
We present a formalism for the analysis of sensitivity of nuclear magnetic resonance pulse sequences to variations of pulse sequence parameters, such as radiofrequency pulses, gradient pulses or evolution delays. The formalism enables the calculation of compact, analytic expressions for the derivatives of the density matrix and the observed signal with respect to the parameters varied. The analysis is based on two constructs computed in the course of modified density-matrix simulations: the error interrogation operators and error commutators. The approach presented is consequently named the Error Commutator Formalism (ECF). It is used to evaluate the sensitivity of the density matrix to parameter variation based on the simulations carried out for the ideal parameters, obviating the need for finite-difference calculations of signal errors. The ECF analysis therefore carries a computational cost comparable to a single density-matrix or product-operator simulation. Its application is illustrated using a number of examples from basic NMR spectroscopy. We show that the strength of the ECF is its ability to provide analytic insights into the propagation of errors through pulse sequences and the behaviour of signal errors under phase cycling. Furthermore, the approach is algorithmic and easily amenable to implementation in the form of a programming code. It is envisaged that it could be incorporated into standard NMR product-operator simulation packages.
Resumo:
The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the complexities associated with chronic human schistosomiasis.
Resumo:
Animal models typically require a known genetic pedigree to estimate quantitative genetic parameters. Here we test whether animal models can alternatively be based on estimates of relatedness derived entirely from molecular marker data. Our case study is the morphology of a wild bird population, for which we report estimates of the genetic variance-covariance matrices (G) of six morphological traits using three methods: the traditional animal model; a molecular marker-based approach to estimate heritability based on Ritland's pairwise regression method; and a new approach using a molecular genealogy arranged in a relatedness matrix (R) to replace the pedigree in an animal model. Using the traditional animal model, we found significant genetic variance for all six traits and positive genetic covariance among traits. The pairwise regression method did not return reliable estimates of quantitative genetic parameters in this population, with estimates of genetic variance and covariance typically being very small or negative. In contrast, we found mixed evidence for the use of the pedigree-free animal model. Similar to the pairwise regression method, the pedigree-free approach performed poorly when the full-rank R matrix based on the molecular genealogy was employed. However, performance improved substantially when we reduced the dimensionality of the R matrix in order to maximize the signal to noise ratio. Using reduced-rank R matrices generated estimates of genetic variance that were much closer to those from the traditional model. Nevertheless, this method was less reliable at estimating covariances, which were often estimated to be negative. Taken together, these results suggest that pedigree-free animal models can recover quantitative genetic information, although the signal remains relatively weak. It remains to be determined whether this problem can be overcome by the use of a more powerful battery of molecular markers and improved methods for reconstructing genealogies.
Resumo:
Having personal that works in projects but belongs to a functional organization is the way that many companies organized their labor force today. Previous research shows that this implies management contradictions and ambiguities between functional manager and project manager; there are unresolved struggles between these two roles in terms of power, accountability, authority and legitimacy. With this paper we aim to analyze those struggles based on previous research and to generate working hypotheses. We first provide a review of the different matrix organizations focusing on the relation between the functional manager and the project manager. We then review the literature concerning temporary organizations and projects as temporary organizations. We conclude by integrating the findings of these perspectives and by identifying working hypotheses and areas for further research.
Resumo:
With saturation within domestic marketplaces and increased growth opportunities overseas, many financial service providers are investing in foreign markets. However, cultural attitudes towards money can present market entry challenges to financial service providers. The industry would therefore benefit from a strategic model that helps to align financial marketing mixes with the cultural dimensions of a foreign market. The Financial Services Cultural Orientation (FSCO) Matrix has therefore been designed, with three cultural dimensions identified which influence preference for financial products; preference for cash, aversion to debt and savings orientation. Based on a combination of these dimensions and their relative strength within a culture, eight different consumer segments for financial products are identified, and marketing strategies for each consumer segment are then proposed. Three cultural clusters from the GLOBE Project House et al. (2002) are used to highlight possible geographic markets for each of these consumer segments. In particular, this paper focuses on GLOBE’s Confucian Asia, Southern Asia and Anglo cultural clusters, as these clusters represent the most well established financial markets in the world and the fastest growing financial markets for the future. The FSCO Matrix provides the financial services industry with an innovative and practical tool for addressing cross-cultural challenges and developing successful marketing strategies for entry into foreign markets.
Resumo:
The efficacy of existing articular cartilage defect repair strategies are limited. Native cartilage tissue forms via a series of exquisitely orchestrated morphogenic events spanning through gestation into early childhood. However, defect repair must be achieved in a non-ideal microenvironment over an accelerated time-frame compatible with the normal life of an adult patient. Scaffolds formed from decellularized tissues are commonly utilized to enable the rapid and accurate repair of tissues such as skin, bladder and heart valves. The intact extracellular matrix remaining following the decellularization of these relatively low-matrix-density tissues is able to rapidly and accurately guide host cell repopulation. By contrast, the extraordinary density of cartilage matrix limits both the initial decellularization of donor material as well as its subsequent repopulation. Repopulation of donor cartilage matrix is generally limited to the periphery, with repopulation of lacunae deeper within the matrix mass being highly inefficient. Herein, we review the relevant literature and discuss the trend toward the use of decellularized donor cartilage matrix of microscopic dimensions. We show that 2-µm microparticles of donor matrix are rapidly integrate with articular chondrocytes, forming a robust cartilage-like composites with enhanced chondrogenic gene expression. Strategies for the clinical application of donor matrix microparticles in cartilage defect repair are discussed.
Resumo:
The study of matrices of rare Type 4 carbonaceous chondrites can reveal important information on parent body rnetamorp~ic processes and provide a comparison with processes on parent bodies of ordinary chc-idrites. Reflectance spectra (Tholen, 1984) from the two largest asteroids in the asteroid belt, Ceres and Pallas, suggest that they may be metamorphosed carbonaceous chondrites. These two asteroids constitute - onethird of the mass in the asteroid belt implying that type 4-6 carbonaceous chondrites are poorly represented in the meteorite collection and may be of considerable importance. The matrix of the C4 chondrite Karoonda has been investigated using a JEOL 2000FX analytical electron microscope (AEM) with an attached Tracor-Northem TN5500 energy dispersive spectrometer (EDS). In previous studies (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969), the petrography of the Karoonda matrix has been described as consisting largely of coarse-grained (50-200 urn in size) olivine and plagioclase (20-100 um in size), associated with micrometer sized magnetite and rare sulphides. AEM observations on matrix show that in addition to these large grains, there is a significant fraction (10 vol%) of interstitial fine grained phases « 5 urn). The mineralogy of these fine-grained phases differs in some respects from that of the coarser-grained matrix identified by optical and SEM techniques (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969). I~ particular crystals of two compositionally distinct pyroxenes « 2 urn in size) have been identified which have not been previously observed in Karoonda by other analytical techniques. Thin film microanalyses (Mackinnon et al., 1986) of these two pyroxenes indicate compositions consistent with augite and low-Ca pyroxene (- Fs27). Fine-grained anhedral olivine « 2 urn size) is the most abundant phase with composition -Fa29' This composition is essentially indistinguishable from that determined for coarser-grained matrix olivines using an electron microprobe (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969). All olivines are associated with subhedral magnetites « 1 urn size) which contain significant Cr (- 2%) and Al (- 1%) as was also noted for larger sized Karoonda magnetites by Delaney et al. (1985). It has recently been suggested (Burgess et al., 1987) on the basis of sulphur release profiles for S-isotope analyses of Karoonda that CaS04 (anhydrite) may be present. However, no sulphate phase has, as yet, been identified in the matrix of Karoonda. Low magnification contrast images suggest that Karoonda may have a significant porosity within the fine-grained matrix fraction. Most crystals are anhedral and do not show evidence for significant compaction. Individual grains often show single point contact with other grains which result in abundant intergranular voids. These voids frequently contain epoxy which was used as part of the specimen preparation procedure due to the friable nature of the bulk sample.
Resumo:
High resolution transmission electron microscopy of the Mighei carbonaceous chondrite matrix has revealed the presence of a new mixed layer structure material. This mixed-layer material consists of an ordered arrangement of serpentine-type (S) and brucite-type (B) layers in the sequence ... SBBSBB. ... Electron diffraction and imaging techniques show that the basal periodicity is ~ 17 Å. Discrete crystals of SBB-type material are typically curved, of small size (<1 μm) and show structural variations similar to the serpentine group minerals. Mixed-layer material also occurs in association with planar serpentine. Characteristics of SBB-type material are not consistent with known terrestrial mixed-layer clay minerals. Evidence for formation by a condensation event or by subsequent alteration of preexisting material is not yet apparent. © 1982.
Resumo:
CARBONACEOUS chondrites provide valuable information as they are the least altered examples of early Solar System material1. The matrix constitutes a major proportion of carbonaceous chondrites. Despite many past attempts, unambiguous identification of the minerals in the matrix has not been totally successful2. This is mainly due to the extremely fine-grained nature of the matrix phases. Recently, progress in the characterisation of these phases has been made by electron diffraction studies3,4. We present here the direct observation, by high resolution imaging, of phases in carbonaceous chondrite matrices. We used ion-thinned sections from the Murchison C2(M) meteorite for transmission electron microscopy. The Murchison matrix contains both ordered and disordered inter-growths of serpentine-like and brucite-like layers. Such mixed-layer structures are new types of layer silicates. © 1979 Nature Publishing Group.
Resumo:
With the overwhelming increase in the amount of texts on the web, it is almost impossible for people to keep abreast of up-to-date information. Text mining is a process by which interesting information is derived from text through the discovery of patterns and trends. Text mining algorithms are used to guarantee the quality of extracted knowledge. However, the extracted patterns using text or data mining algorithms or methods leads to noisy patterns and inconsistency. Thus, different challenges arise, such as the question of how to understand these patterns, whether the model that has been used is suitable, and if all the patterns that have been extracted are relevant. Furthermore, the research raises the question of how to give a correct weight to the extracted knowledge. To address these issues, this paper presents a text post-processing method, which uses a pattern co-occurrence matrix to find the relation between extracted patterns in order to reduce noisy patterns. The main objective of this paper is not only reducing the number of closed sequential patterns, but also improving the performance of pattern mining as well. The experimental results on Reuters Corpus Volume 1 data collection and TREC filtering topics show that the proposed method is promising.
Resumo:
The generation of a correlation matrix from a large set of long gene sequences is a common requirement in many bioinformatics problems such as phylogenetic analysis. The generation is not only computationally intensive but also requires significant memory resources as, typically, few gene sequences can be simultaneously stored in primary memory. The standard practice in such computation is to use frequent input/output (I/O) operations. Therefore, minimizing the number of these operations will yield much faster run-times. This paper develops an approach for the faster and scalable computing of large-size correlation matrices through the full use of available memory and a reduced number of I/O operations. The approach is scalable in the sense that the same algorithms can be executed on different computing platforms with different amounts of memory and can be applied to different problems with different correlation matrix sizes. The significant performance improvement of the approach over the existing approaches is demonstrated through benchmark examples.