105 resultados para Lycopersicum esculentum Mill


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ready availability of sugarcane bagasse at an existing industrial facility and the potential availability of extra fibre through trash collection make sugarcane fibre the best candidate for early stage commercialisation of cellulosic ethanol technologies. The commercialisation of cellulosic ethanol technologies in the sugar industry requires both development of novel technologies and the assessment of these technologies at a pre-commercial scale. In 2007, the Queensland University of Technology (QUT) received funding from the Australian and Queensland Governments to construct a pilot research and development facility for the production of bioethanol and other renewable biocommodities from biomass including sugarcane bagasse. This facility has been built on the site of the Racecourse Sugar Mill in Mackay, Queensland and is known as the Mackay Renewable Biocommodities Pilot Plant (MRBPP). This research facility is capable of processing cellulosic biomass by a variety of pretreatment technologies and includes equipment for enzymatic saccharification, fermentation and distillation to produce ethanol. Lignin and fermentation co-products can also be produced in the pilot facility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the 2005 season, Mackay Sugar and its growers agreed to implement a new cane payment system. The aim of the new system was to better align the business drivers between the mill and its growers and as a result improve business decision making. The technical basis of the new cane payment system included a fixed sharing of the revenue from sugar cane between the mill and growers. Further, the new system replaced the CCS formula with a new estimate of recoverable sugar (PRS) and introduced NIR for payment analyses. Significant mill and grower consultation processes led to the agreement to implement the new system in 2005 and this consultative approach has been reflected in two seasons of successful operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A better understanding of the behaviour of prepared cane and bagasse, especially the ability to model the mechanical behaviour of bagasse as it is squeezed in a milling unit to extract juice, would help identify how to improve the current milling process; for example to reduce final bagasse moisture. Previous investigations have proven with certainty that juice flow through bagasse obeys Darcy’s permeability law, that the grip of the rough surface of the grooves on the bagasse can be represented by the Mohr- Coulomb failure criterion for soils, and that the internal mechanical behaviour of the bagasse can be represented by critical state behaviour similar to that of sand and clay. Current Finite Element Models (FEM) available in commercial software have adequate permeability models. However, commercial software does not contain an adequate mechanical model for bagasse. Progress has been made in the last ten years towards implementing a mechanical model for bagasse in finite element software code. This paper builds on that progress and carries out a further step towards obtaining an adequate material model. In particular, the prediction of volume change during shearing of normally consolidated final bagasse is addressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overcoming many of the constraints to early stage investment in biofuels production from sugarcane bagasse in Australia requires an understanding of the complex technical, economic and systemic challenges associated with the transition of established sugar industry structures from single product agri-businesses to new diversified multi-product biorefineries. While positive investment decisions in new infrastructure requires technically feasible solutions and the attainment of project economic investment thresholds, many other systemic factors will influence the investment decision. These factors include the interrelationships between feedstock availability and energy use, competing product alternatives, technology acceptance and perceptions of project uncertainty and risk. This thesis explores the feasibility of a new cellulosic ethanol industry in Australia based on the large sugarcane fibre (bagasse) resource available. The research explores industry feasibility from multiple angles including the challenges of integrating ethanol production into an established sugarcane processing system, scoping the economic drivers and key variables relating to bioethanol projects and considering the impact of emerging technologies in improving industry feasibility. The opportunities available from pilot scale technology demonstration are also addressed. Systems analysis techniques are used to explore the interrelationships between the existing sugarcane industry and the developing cellulosic biofuels industry. This analysis has resulted in the development of a conceptual framework for a bagassebased cellulosic ethanol industry in Australia and uses this framework to assess the uncertainty in key project factors and investment risk. The analysis showed that the fundamental issue affecting investment in a cellulosic ethanol industry from sugarcane in Australia is the uncertainty in the future price of ethanol and government support that reduces the risks associated with early stage investment is likely to be necessary to promote commercialisation of this novel technology. Comprehensive techno-economic models have been developed and used to assess the potential quantum of ethanol production from sugarcane in Australia, to assess the feasibility of a soda-based biorefinery at the Racecourse Sugar Mill in Mackay, Queensland and to assess the feasibility of reducing the cost of production of fermentable sugars from the in-planta expression of cellulases in sugarcane in Australia. These assessments show that ethanol from sugarcane in Australia has the potential to make a significant contribution to reducing Australia’s transportation fuel requirements from fossil fuels and that economically viable projects exist depending upon assumptions relating to product price, ethanol taxation arrangements and greenhouse gas emission reduction incentives. The conceptual design and development of a novel pilot scale cellulosic ethanol research and development facility is also reported in this thesis. The establishment of this facility enables the technical and economic feasibility of new technologies to be assessed in a multi-partner, collaborative environment. As a key outcome of this work, this study has delivered a facility that will enable novel cellulosic ethanol technologies to be assessed in a low investment risk environment, reducing the potential risks associated with early stage investment in commercial projects and hence promoting more rapid technology uptake. While the study has focussed on an exploration of the feasibility of a commercial cellulosic ethanol industry from sugarcane in Australia, many of the same key issues will be of relevance to other sugarcane industries throughout the world seeking diversification of revenue through the implementation of novel cellulosic ethanol technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 31st TTRA conference was held in California’s San Fernando Valley, home of Hollywood and Burbank’s movie and television studios. The twin themes of Hollywood and the new Millennium promised and delivered “something old, yet something new”. The meeting offered a historical summary, not only of the year in review but also of many features of travel research since the first literature in the field appeared in the 1970s. Also, the millennium theme set the scene for some stimulating and forward thinking discussions. The Hollywood location offered an opportunity to ponder on the value of the movie-induced tourism for Los Angeles, at a time when Hollywood Boulevard was in the midst of a much needed redevelopment programme. Hollywood Chamber of Commerce speaker Oscar Arslanian acknowledged that the face of the famous district had become tired, and that its ability to continue to attract visitors in the future lay in redeveloping its past heritage. In line with the Hollywood theme a feature of the conference was a series of six special sessions with “Stars of Travel Research”. These sessions featured: Clare Gunn, Stanley Plog, Charles Gouldner, John Hunt, Brent Ritchie, Geoffrey Crouch, Peter Williams, Douglas Frechtling, Turgut Var, Robert Christie-Mill, and John Crotts. Delegates were indeed privileged to hear from many of the pioneers of tourism research. Clare Gunn, Charles Goeldner, Turgut Var and Stanley Plog, for example, traced the history of different aspects of the tourism literature, and in line with the millennium theme, offered some thought provoking discussion on the future challenges facing tourism. These included; the commodotisation of airlines and destinations, airport and traffic congestion, environment sustainability responsibility and the looming burst of the baby-boomer bubble. Included in the conference proceedings are four papers presented by five of the “Stars”. Brent Ritchie and Geoffrey Crouch discuss the critical success factors for destinations, Clare Gunn shares his concerns about tourism being a smokestack industry, Doug Frechtling provides forecasts of outbound travel from 20 countries, and Charles Gouldner, who has attended all 31 TTRA conferences, reflects on the changes that have taken place in tourism research over 35 years...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Australia, railway systems play a vital role in transporting the sugarcane crop from farms to mills. The sugarcane transport system is very complex and uses daily schedules, consisting of a set of locomotives runs, to satisfy the requirements of the mill and harvesters. The total cost of sugarcane transport operations is very high; over 35% of the total cost of sugarcane production in Australia is incurred in cane transport. Efficient schedules for sugarcane transport can reduce the cost and limit the negative effects that this system can have on the raw sugar production system. There are several benefits to formulating the train scheduling problem as a blocking parallel-machine job shop scheduling (BPMJSS) problem, namely to prevent two trains passing in one section at the same time; to keep the train activities (operations) in sequence during each run (trip) by applying precedence constraints; to pass the trains on one section in the correct order (priorities of passing trains) by applying disjunctive constraints; and, to ease passing trains by solving rail conflicts by applying blocking constraints and Parallel Machine Scheduling. Therefore, the sugarcane rail operations are formulated as BPMJSS problem. A mixed integer programming and constraint programming approaches are used to describe the BPMJSS problem. The model is solved by the integration of constraint programming, mixed integer programming and search techniques. The optimality performance is tested by Optimization Programming Language (OPL) and CPLEX software on small and large size instances based on specific criteria. A real life problem is used to verify and validate the approach. Constructive heuristics and new metaheuristics including simulated annealing and tabu search are proposed to solve this complex and NP-hard scheduling problem and produce a more efficient scheduling system. Innovative hybrid and hyper metaheuristic techniques are developed and coded using C# language to improve the solutions quality and CPU time. Hybrid techniques depend on integrating heuristic and metaheuristic techniques consecutively, while hyper techniques are the complete integration between different metaheuristic techniques, heuristic techniques, or both.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binge-like patterns of excessive drinking during young adulthood increase the propensity for alcohol use disorders (AUDs) later in adult life; however, the mechanisms that drive this are not completely understood. Previous studies showed that the δ-opioid peptide receptor (DOP-R) is dynamically regulated by exposure to ethanol and that the DOP-R plays a role in ethanol-mediated behaviors. The aim of this study was to determine the role of the DOP-R in high ethanol consumption from young adulthood through to late adulthood by measuring DOP-R-mediated [(35)S]GTPγS binding in brain membranes and DOP-R-mediated analgesia using a rat model of high ethanol consumption in Long Evans rats. We show that DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia changes during development, being highest during early adulthood and reduced in late adulthood. Intermittent access to ethanol but not continuous ethanol or water from young adulthood leads to an increase in DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia into late adulthood. Multiple microinfusions of naltrindole into the dorsal striatum or multiple systemic administration of naltrindole reduces ethanol consumption, and following termination of treatment, DOP-R activity in the dorsal striatum is attenuated. These findings suggest that DOP-R activity in the dorsal striatum plays a role in high levels of ethanol consumption and suggest that targeting the DOP-R is an alternative strategy for the treatment of AUDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2007, the Queensland University of Technology (QUT) received funding from the Australian Government through the NCRIS program and from the then Queensland Government Department of State Development to construct a pilot research and development facility for the production of bioethanol and other renewable biocommodities from biomass including sugar cane bagasse. This facility is being constructed adjacent to the Racecourse Sugar Mill in Mackay and is known as the Mackay Renewable Biocommodities Pilot Plant (MRBPP). The MRBPP will be capable of processing biomass through a pressurised pretreatment reactor and includes equipment for enzymatic saccharification, fermentation and distillation to produce ethanol. Lignin and fermentation co-products will also be produced at a pilot scale for product development and testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

THE Mackay Renewable Biocommodities Pilot Plant is a pilot scale facility owned and operated by QUT for research and demonstration of the conversion of lignocellulosic biomass such as sugarcane bagasse into biofuels. The pilot plant accommodates unique state-of-the-art equipment to process a wide range of feedstocks and is strategically located on the site of the Mackay Sugar Ltd Racecourse Mill. Major facilities include a biomass handling system, pre-treatment reactor, saccharification reactor, fermentors, distillation column and bioseparations equipment. This paper provides an update on the design, construction, commissioning and start-up of the facility. In addition, the paper provides results from preliminary facility trials on the pre-treatment of sugarcane bagasse for cellulosic ethanol production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orebodies at Ok Tedi contain a number of different fluorine bearing minerals. Some of these minerals report to concentrate and are responsible for the presence of the penalty element, fluorine, within the concentrate. Previous analytical work has tended to examine geological samples for content, rather than determine the metallurgical behaviour of the different mineralogical species. This investigation utilised X-Ray Diffraction combined with Scanning Electron Microscope/Electron Microprobe to identify the fluorine bearing minerals in flotation test products. Seven fluorine bearing minerals were identified, viz., talc, phlogopite, amphibole (tremolite and actinolite), sphene, apatite, biotite and clay. Talc was found exclusively in the skarn ore type. Phlogopite and amphiboles (tremolite and actinolite) were found to occur in both skarn and porphyry ores, while sphene, apatite, biotite and clay were found only in the porphyry ores. Of the fluorine bearing minerals observed, only talc exhibited natural hydrophobicity to any significant degree. Phlogopite and the amphibole minerals were found to be hydrophillic, whilst the remaining minerals occurred in insufficient quantities to determine the flotation behaviour. Ok Tedi copper concentrate fluorine content prior to skarn ore treatment in the mill (typically 350ppm) was previously identified as deriving from phlogopite, while talc was believed to be the source of intermittent high concentrate fluorine contents when skarn ores were treated. This paper provides supporting evidence for this belief, and reports the nature of fluorine bearing mineral flotation behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lignocellulosic materials, such as sugar cane bagasse, a waste product of the sugarcane processing industry, agricultural residues and herbaceous crops, may serve as an abundant and comparatively cheap feedstock for largescale industrial fermentation, resulting in the production of marketable end-products. However, the complex structure of lignocellulosic materials, the presence of various hexose and pentose sugars in the hemicellulose component, and the presence of various compounds that inhibit the organisms selected for the fermentation process, all constitute barriers that add to the production costs and make full scale industrial production economically less feasible. The work presented in this thesis was conducted in order to screen microorganisms for ability to utilize pentose sugars derived from the sugar mill industrial waste. A large number of individual bacterial strains were investigated from hemi-cellulose rich material collected at the Proserpine and Maryborough sugar mills, notably soil samples from the mill sites. The research conducted to isolation of six pentose-capable Gram-positive organisms from the actinomycetes group by using pentose as a sole carbon source in the cultivation process. The isolates were identified as Corynebacterium glutamicum, Actinomyces odontolyticus, Nocardia elegans, and Propionibacterium freudenreichii all of which were isolated from the hemicellulose-enriched soil. Pentose degrading microbes are very rare in the environment, so this was a significant discovery. Previous research indicated that microbes could degrade pentose after genetic modification but the microbes discovered in this research were able to naturally utilize pentose. Six isolates, identified as four different genera, were investigated for their ability to utilize single sugars as substrates (glucose, xylose, arabinose or ribose), and also dual sugars as substrates (a hexose plus a pentose). The results demonstrated that C. glutamicum, A. odontolyticus, N. elegans, and P. freudenreichii were pentose-capable (able to grow using xylose or other pentose sugar), and also showed diauxie growth characteristics during the dual-sugar (glucose, in combination with xylose, arabinose or ribose) carbon source tests. In addition, it was shown that the isolates displayed very small differences in growth rates when grown on dual sugars as compared to single sugars, whether pentose or hexose in nature. The anabolic characteristics of C. glutamicum, A. odontolyticus, N. elegans and P. freudenreichii were subsequently investigated by qualitative analysis of their end-products, using high performance liquid chromatography (HPLC). All of the organisms produced arginine and cysteine after utilization of the pentose substrates alone. In addition, P. freudenreichii produced alanine and glycine. The end-product profile arising from culture with dual carbon sources was also tested. Interestingly, this time the product was different. All of them produced the amino acid glycine, when grown on a combination substrate-mix of glucose with xylose, and also glucose with arabinose. Only N. elegans was able to break down ribose, either singly or in combination with glucose, and the end-product of metabolism of the glucose plus ribose substrate combination was glutamic acid. The ecological analysis of microbial abundance in sugar mill waste was performed using denaturing gradient gel electrophoresis (DGGE) and also the metagenomic microarray PhyloChip method. Eleven solid samples and seven liquid samples were investigated. A very complex bacterial ecosystem was demonstrated in the seven liquid samples after testing with the PhyloChip method. It was also shown that bagasse leachate was the most different, compared to all of the other samples, by virtue of its richness in variety of taxa and the complexity of its bacterial community. The bacterial community in solid samples from Proserpine, Mackay and Maryborough sugar mills showed huge diversity. The information found from 16S rDNA sequencing results was that the bacterial genera Brevibacillus, Rhodospirillaceae, Bacillus, Vibrio and Pseudomonas were present in greatest abundance. In addition, Corynebacterium was also found in the soil samples. The metagenomic studies of the sugar mill samples demonstrate two important outcomes: firstly that the bagasse leachate, as potentially the most pentose-rich sample tested, had the most complex and diverse bacterial community; and secondly that the pentose-capable isolates that were initially discovered at the beginning of this study, were not amongst the most abundant taxonomic groups discovered in the sugar mill samples, and in fact were, as suspected, very rare. As a bioprospecting exercise, therefore, the study has discovered organisms that are naturally present, but in very small numbers, in the appropriate natural environment. This has implications for the industrial application of E-PUB, in that a seeding process using a starter culture will be necessary for industrial purposes, rather than simply assuming that natural fermentation might occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis reports on an investigation to develop an advanced and comprehensive milling process model of the raw sugar factory. Although the new model can be applied to both, the four-roller and six-roller milling units, it is primarily developed for the six-roller mills which are widely used in the Australian sugar industry. The approach taken was to gain an understanding of the previous milling process simulation model "MILSIM" developed at the University of Queensland nearly four decades ago. Although the MILSIM model was widely adopted in the Australian sugar industry for simulating the milling process it did have some incorrect assumptions. The study aimed to eliminate all the incorrect assumptions of the previous model and develop an advanced model that represents the milling process correctly and tracks the flow of other cane components in the milling process which have not been considered in the previous models. The development of the milling process model was done is three stages. Firstly, an enhanced milling unit extraction model (MILEX) was developed to access the mill performance parameters and predict the extraction performance of the milling process. New definitions for the milling performance parameters were developed and a complete milling train along with the juice screen was modelled. The MILEX model was validated with factory data and the variation in the mill performance parameters was observed and studied. Some case studies were undertaken to study the effect of fibre in juice streams, juice in cush return and imbibition% fibre on extraction performance of the milling process. It was concluded from the study that the empirical relations developed for the mill performance parameters in the MILSIM model were not applicable to the new model. New empirical relations have to be developed before the model is applied with confidence. Secondly, a soluble and insoluble solids model was developed using modelling theory and experimental data to track the flow of sucrose (pol), reducing sugars (glucose and fructose), soluble ash, true fibre and mud solids entering the milling train through the cane supply and their distribution in juice and bagasse streams.. The soluble impurities and mud solids in cane affect the performance of the milling train and further processing of juice and bagasse. New mill performance parameters were developed in the model to track the flow of cane components. The developed model is the first of its kind and provides some additional insight regarding the flow of soluble and insoluble cane components and the factors affecting their distribution in juice and bagasse. The model proved to be a good extension to the MILEX model to study the overall performance of the milling train. Thirdly, the developed models were incorporated in a proprietary software package "SysCAD’ for advanced operational efficiency and for availability in the ‘whole of factory’ model. The MILEX model was developed in SysCAD software to represent a single milling unit. Eventually the entire milling train and the juice screen were developed in SysCAD using series of different controllers and features of the software. The models developed in SysCAD can be run from macro enabled excel file and reports can be generated in excel sheets. The flexibility of the software, ease of use and other advantages are described broadly in the relevant chapter. The MILEX model is developed in static mode and dynamic mode. The application of the dynamic mode of the model is still under progress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pressure feeder chutes are pieces of equipment used in sugar cane crushing to increase the amount of cane that can be put through a mill. The continuous pressure feeder was developed with the objective to provide a constant feed of bagasse under pressure to the mouth of the crushing mills. The pressure feeder chute is used in a sugarcane milling unit to transfer bagasse from one set of crushing rolls to a second set of crushing rolls. There have been many pressure feeder chute failures in the past. The pressure feeder chute is quite vulnerable and if the bagasse throughput is blocked at the mill rollers, the pressure build-up in the chute can be enormous, which can ultimately result in failure. The result is substantial damage to the rollers, mill and chute construction, and downtimes of up to 48 hours can be experienced. Part of the problem is that the bagasse behaviour in the pressure feeder chute is not understood well. If the pressure feeder chute behaviour was understood, then the chute geometry design could be modified in order to minimise risk of failure. There are possible avenues for changing pressure feeder chute design and operations with a view to producing more reliable pressure feeder chutes in the future. There have been previous attempts to conduct experimental work to determine the causes of pressure feeder chute failures. There are certain guidelines available, however pressure feeder chute failures continue. Pressure feeder chute behaviour still remains poorly understood. This thesis contains the work carried out between April 14th 2009 and October 10th 2012 that focuses on the design of an experimental apparatus to measure forces and visually observe bagasse behaviour in an attempt to understand bagasse behaviour in pressure feeder chutes and minimise the risk of failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reliability analysis is crucial to reducing unexpected down time, severe failures and ever tightened maintenance budget of engineering assets. Hazard based reliability methods are of particular interest as hazard reflects the current health status of engineering assets and their imminent failure risks. Most existing hazard models were constructed using the statistical methods. However, these methods were established largely based on two assumptions: one is the assumption of baseline failure distributions being accurate to the population concerned and the other is the assumption of effects of covariates on hazards. These two assumptions may be difficult to achieve and therefore compromise the effectiveness of hazard models in the application. To address this issue, a non-linear hazard modelling approach is developed in this research using neural networks (NNs), resulting in neural network hazard models (NNHMs), to deal with limitations due to the two assumptions for statistical models. With the success of failure prevention effort, less failure history becomes available for reliability analysis. Involving condition data or covariates is a natural solution to this challenge. A critical issue for involving covariates in reliability analysis is that complete and consistent covariate data are often unavailable in reality due to inconsistent measuring frequencies of multiple covariates, sensor failure, and sparse intrusive measurements. This problem has not been studied adequately in current reliability applications. This research thus investigates such incomplete covariates problem in reliability analysis. Typical approaches to handling incomplete covariates have been studied to investigate their performance and effects on the reliability analysis results. Since these existing approaches could underestimate the variance in regressions and introduce extra uncertainties to reliability analysis, the developed NNHMs are extended to include handling incomplete covariates as an integral part. The extended versions of NNHMs have been validated using simulated bearing data and real data from a liquefied natural gas pump. The results demonstrate the new approach outperforms the typical incomplete covariates handling approaches. Another problem in reliability analysis is that future covariates of engineering assets are generally unavailable. In existing practices for multi-step reliability analysis, historical covariates were used to estimate the future covariates. Covariates of engineering assets, however, are often subject to substantial fluctuation due to the influence of both engineering degradation and changes in environmental settings. The commonly used covariate extrapolation methods thus would not be suitable because of the error accumulation and uncertainty propagation. To overcome this difficulty, instead of directly extrapolating covariate values, projection of covariate states is conducted in this research. The estimated covariate states and unknown covariate values in future running steps of assets constitute an incomplete covariate set which is then analysed by the extended NNHMs. A new assessment function is also proposed to evaluate risks of underestimated and overestimated reliability analysis results. A case study using field data from a paper and pulp mill has been conducted and it demonstrates that this new multi-step reliability analysis procedure is able to generate more accurate analysis results.