226 resultados para Light water reactors.
Resumo:
intimate drowning 50 minute performance + installation work ice | salt | tears | This work is about death. Grief The relationships before The aftermath - of confusion, violence, isolation The never ending questions The devastating loss and paranoia "Since my wife died, I have spent the last six years treading water - trying to stop myself from drowning. Sometimes I catch myself not breathing. I have to remind myself that I can't live underwater no matter how much I want to." Grief. Loss. Tears. Fear. Sadness Water. Milk. Salt. Ice Falling. Waiting Submerged. Suffocated. Broken ties Intention. Lack of focus. Intensity of focus Fighting. Screaming. Wailing Blue. White. Black. Blackness The doors open: we walk through a gauze curtain and discover a dark space with a square of light in the middle of the room. As we walk closer to the light, we see a girl writing in charcoal on the floor around a square box filled with milk. She is writing the same thing over and over. The more she writes the more desperate she becomes: I am listening… We have to keep walking past. She isn’t writing for us. We find our seats Two people: one slowly breaking the hundreds of fragile strings that tie her to the other. The other is pleading with her to stop: Please. Please don’t. Please Avril. …Please don’t One girl facing away from us. She is slowly swimming on the spot without water. Projected next to her are images of her drowning under water. Salt falls in front of her. Behind her. A wall of salt. She is bound to the spot. Underwater and still breathing. Swimming in her own tears. She won’t escape. She wants to stay, but desires nothing Two people standing in a large square box filled with milk. They start in intimacy. The relationship begins to dissolve before us. One fights to be with/on/behind the other. The other fights her off. The milk is splashed. Why aren't they being careful? In the darkness there is scrubbing. Someone is scrubbing the floor. The other girl is on her knees trying to erase the original writing. The traces left behind that we have no control over. We only see her for a second, but hear her in the darkness. Scrubbing. It is pointless. You can't erase the past.
Resumo:
This paper assesses and compares the performances of two daylight collection strategies, one passive and one active, for large-scale mirrored light pipes (MLP) illuminating deep plan buildings. Both strategies use laser cut panels (LCP) as the main component of the collection system. The passive system comprises LCPs in pyramid form, whereas the active system uses a tiled LCP on a simple rotation mechanism that rotates 360° in 24 hours. Performance is assessed using scale model testing under sunny sky conditions and mathematical modelling. Results show average illuminance levels for the pyramid LCP ranging from 50 to 250 lux and 150 to 200 lux for the rotating LCPs. Both systems improve the performance of a MLP. The pyramid LCP increases the performance of a MLP by 2.5 times and the rotating LCP by 5 times, when compared to an open pipe particularly for low sun elevation angles.
Resumo:
This thesis focuses on the volatile and hygroscopic properties of mixed aerosol species. In particular, the influence organic species of varying solubility have upon seed aerosols. Aerosol studies were conducted at the Paul Scherrer Institut Laboratory for Atmospheric Chemistry (PSI-LAC, Villigen, Switzerland) and at the Queensland University of Technology International Laboratory for Air Quality and Health (QUT-ILAQH, Brisbane, Australia). The primary measurement tool employed in this program was the Volatilisation and Hygroscopicity Tandem Differential Mobility Analyser (VHTDMA - Johnson et al. 2004). This system was initially developed at QUT within the ILAQH and was completely re-developed as part of this project (see Section 1.4 for a description of this process). The new VHTDMA was deployed to the PSI-LAC where an analysis of the volatile and hygroscopic properties of ammonium sulphate seeds coated with organic species formed from the photo-oxidation of á-pinene was conducted. This investigation was driven by a desire to understand the influence of atmospherically prevalent organics upon water uptake by material with cloud forming capabilities. Of particular note from this campaign were observed influences of partially soluble organic coatings upon inorganic ammonium sulphate seeds above and below their deliquescence relative humidity (DRH). Above the DRH of the seed increasing the volume fraction of the organic component was shown to reduce the water uptake of the mixed particle. Below the DRH the organic was shown to activate the water uptake of the seed. This was the first time this effect had been observed for á-pinene derived SOA. In contrast with the simulated aerosols generated at the PSI-LAC a case study of the volatile and hygroscopic properties of diesel emissions was undertaken. During this stage of the project ternary nucleation was shown, for the first time, to be one of the processes involved in formation of diesel particulate matter. Furthermore, these particles were shown to be coated with a volatile hydrophobic material which prevented the water uptake of the highly hygroscopic material below. This result was a first and indicated that previous studies into the hygroscopicity of diesel emission had erroneously reported the particles to be hydrophobic. Both of these results contradict the previously upheld Zdanovksii-Stokes-Robinson (ZSR) additive rule for water uptake by mixed species. This is an important contribution as it adds to the weight of evidence that limits the validity of this rule.