58 resultados para Lebesgue Constants
Resumo:
The availability of synthetic peptides has paved the way for their use in tailor-made interactions with biomolecules. In this study, a 16mer LacI-based peptide was used as an affinity ligand to examine the scale up feasibility for plasmid DNA purification. First, the peptide was designed and characterized for the affinity purification of lacO containing plasmid DNA, to be employed as a high affinity ligand for the potential capturing of plasmid DNA in a single unit operation. It was found there were no discernible interactions with a control plasmid that did not encode the lacO nucleotide sequence. The dissociation equilibrium constant of the binding between the 16mer peptide and target pUC19 was 5.0 ± 0.5 × 10-8 M as assessed by surface plasmon resonance. This selectivity and moderated affinity indicate that the 16mer is suitable for the adsorption and chromatographic purification of plasmid DNA. The suitability of this peptide was then evaluated using a chromatography system with the 16mer peptide immobilized to a customized monolith to purify plasmid DNA, obtaining preferential purification of supercoiled pUC19. The results demonstrate the applicability of peptide-monolith supports to scale up the purification process for plasmid DNA using designed ligands via a biomimetic approach.
Resumo:
Peptides constructed from α-helical subunits of the Lac repressor protein (LacI) were designed then tailored to achieve particular binding kinetics and dissociation constants for plasmid DNA purification and detection. Surface plasmon resonance was employed for quantification and characterization of the binding of double stranded Escherichia coli plasmid DNA (pUC19) via the lac operon (lacO) to "biomimics" of the DNA binding domain of LacI. Equilibrium dissociation constants (K D), association (k a), and dissociation rates (k d) for the interaction between a suite of peptide sequences and pUC19 were determined. K D values measured for the binding of pUC19 to the 47mer, 27mer, 16mer, and 14mer peptides were 8.8 ± 1.3 × 10 -10 M, 7.2 ± 0.6 × 10 -10 M, 4.5 ± 0.5 × 10 -8 M, and 6.2 ± 0.9 × 10 -6 M, respectively. These findings show that affinity peptides, composed of subunits from a naturally occurring operon-repressor interaction, can be designed to achieve binding characteristics suitable for affinity chromatography and biosensor devices.
Resumo:
Plasmid DNA for therapeutic and vaccination purposes must be highly purified. The high selectivity of affinity chromatography makes it ideal for the isolation of pDNA from complex biological feed stocks. Affinity chromatography makes use of the biological function and/or individual chemical structure of the interacting molecules. However, the success of any affinity purification protocol is dependent on the availability of suitable ligands. In this study, surface plasmon resonance (SPR) based Biacore system has been employed for the detection and quantification of the binding between lac operon (lacO) sequence contained in a pDNA and synthetic peptides based on the DNA-binding domain of the lac repressor protein, lad. The equilibrium dissociation constant (K D) and association and dissociation rate constants (ka, kd) for the interaction between plasmid DNA and designed peptides were determined.
Resumo:
Wound healing and tumour growth involve collective cell spreading, which is driven by individual motility and proliferation events within a population of cells. Mathematical models are often used to interpret experimental data and to estimate the parameters so that predictions can be made. Existing methods for parameter estimation typically assume that these parameters are constants and often ignore any uncertainty in the estimated values. We use approximate Bayesian computation (ABC) to estimate the cell diffusivity, D, and the cell proliferation rate, λ, from a discrete model of collective cell spreading, and we quantify the uncertainty associated with these estimates using Bayesian inference. We use a detailed experimental data set describing the collective cell spreading of 3T3 fibroblast cells. The ABC analysis is conducted for different combinations of initial cell densities and experimental times in two separate scenarios: (i) where collective cell spreading is driven by cell motility alone, and (ii) where collective cell spreading is driven by combined cell motility and cell proliferation. We find that D can be estimated precisely, with a small coefficient of variation (CV) of 2–6%. Our results indicate that D appears to depend on the experimental time, which is a feature that has been previously overlooked. Assuming that the values of D are the same in both experimental scenarios, we use the information about D from the first experimental scenario to obtain reasonably precise estimates of λ, with a CV between 4 and 12%. Our estimates of D and λ are consistent with previously reported values; however, our method is based on a straightforward measurement of the position of the leading edge whereas previous approaches have involved expensive cell counting techniques. Additional insights gained using a fully Bayesian approach justify the computational cost, especially since it allows us to accommodate information from different experiments in a principled way.
Resumo:
Switchgrass was treated by 1% (w/w) H₂SO₄in batch tube reactors at temperatures ranging from 140–220°C for up to 60 minutes. In this study, release patterns of glucose, 5-hydroxymethylfurfural (5-HMF), and levulinic acid from switchgrass cellulose were investigated through a mechanistic kinetic model. The predictions were consistent with the measured products of interest when new parameters reflecting the effects of reaction limitations, such as cellulose crystallinity, acid soluble lignin–glucose complex (ASL–glucose) and humins that cannot be quantitatively analyzed, were included. The new mechanistic kinetic model incorporating these parameters simulated the experimental data with R² above 0.97. Results showed that glucose yield was most sensitive to variations in the parameter regarding the cellulose crystallinity at low temperatures (140–180°C), while the impact of crystallinity on the glucose yield became imperceptible at elevated temperatures (200–220 °C). Parameters related to the undesired products (e.g. ASL–glucose and humins) were the most sensitive factors compared with rate constants and other additional parameters in impacting the levulinic acid yield at elevated temperatures (200–220°C), while their impacts were negligible at 140–180°C. These new findings provide a more rational explanation for the kinetic changes in dilute acid pretreatment performance and suggest that the influences of cellulose crystallinity and undesired products including ASL–glucose and humins play key roles in determining the generation of glucose, 5-HMF and levulinic acid from biomass-derived cellulose.
Resumo:
Hollow flange channel section is a cold-formed high-strength and thin-walled steel section with a unique shape including two rectangular hollow flanges and a slender web. Due to its mono-symmetric characteristics, it will also be subjected to torsion when subjected to transverse loads in practical applications. Past research on steel beams subject to torsion has concentrated on open sections while very few steel design standards give suitable design rules for torsion design. Since the hollow flange channel section is different from conventional open sections, its torsional behaviour remains unknown to researchers. Therefore the elastic behaviour of hollow flange channel sections subject to uniform and non-uniform torsion, and combined torsion and bending was investigated using the solutions of appropriate differential equilibrium equations. The section torsion shear flow, warping normal stress distribution, and section constants including torsion constant and warping constant were obtained. The results were compared with those from finite element analyses that verified the accuracy of analytical solutions. Parametric studies were undertaken for simply supported beams subject to a uniformly distributed torque and a uniformly distributed transverse load applied away from the shear centre. This paper presents the details of this research into the elastic behaviour and strength of hollow flange channel sections subject to torsion and bending and the results.
Resumo:
Background: Body mass index (BMI) is used to diagnose obesity. However, its ability to predict the percentage fat mass (%FM) reliably is doubtful. Therefore validity of BMI as a diagnostic tool of obesity is questioned. Aim: This study is focused on determining the ability of BMI-based cut-off values in diagnosing obesity among Australian children of white Caucasian and Sri Lankan origin. Subjects and methods: Height and weight was measured and BMI (W/H2) calculated. Total body water was determined by deuterium dilution technique and fat free mass and hence fat mass derived using age- and gender-specific constants. A %FM of 30% for girls and 20% for boys was considered as the criterion cut-off level for obesity. BMI-based obesity cut-offs described by the International Obesity Task Force (IOTF), CDC/NCHS centile charts and BMI-Z were validated against the criterion method. Results: There were 96 white Caucasian and 42 Sri Lankan children. Of the white Caucasians, 19 (36%) girls and 29 (66%) boys, and of the Sri Lankans 7 (46%) girls and 16 (63%) boys, were obese based on %FM. The FM and BMI were closely associated in both Caucasians (r = 0.81, P<0.001) and Sri Lankans (r = 0.92, P<0.001). Percentage FM and BMI also had a lower but significant association. Obesity cut-off values recommended by IOTF failed to detect a single case of obesity in either group. However, NCHS and BMI-Z cut-offs detected cases of obesity with low sensitivity. Conclusions: BMI is a poor indicator of percentage fat and the commonly used cut-off values were not sensitive enough to detect cases of childhood obesity in this study. In order to improve the diagnosis of obesity, either BMI cut-off values should be revised to increase the sensitivity or the possibility of using other indirect methods of estimating the %FM should be explored.
Resumo:
Three fullerene isoindoline nitroxides N-methyl-3,4-fulleropyrrolidine-2-spiro-5′- (1′,1′,3′,3′-tetramethylisoindolin-2′-yloxyl), (C60-(TMIO)m, and C70-(TMIO)n) were synthesized by the covalent bonding of 5-formyl-1,1,3,3-tetramethyl isoindolin-2-yloxyl to the fullerenes C60 and C70. Significantly, the X-ray photoelectron spectra indicated the characteristic N 1s signals of NO. at 402 eV. The atomic force microscope morphologies showed that the average particle sizes of C60-(TMIO)m and C70-(TMIO)n were 38 and 15 nm. The electrochemical experiments indicated that fullerene bound isoindoline nitroxides retained similar electrochemical properties and redox reaction mechanisms as the parent nitroxides. The electron paramagnetic resonance spectra of the fullerene isoindoline nitroxides all exhibited the hyperfine splittings and characteristic spectra of tetramethyl isoindoline nitroxides, with typical nitroxide g-values and nitrogen isotropic hyperfine coupling constants. Therefore, these fullerene isoindoline nitroxides may be considered as potential candidates for novel biological spin probes using electron paramagnetic resonance spectroscopy.
Resumo:
The aim of the study was to determine the reliability of body mass index based (BMI) cutoff values in diagnosing obesity among Sri Lankan children. Height, weight, waist circumference (WC) and hip circumference (HC) in 282 children were measured. Total body water was determined by deuterium dilution and fat mass (FM) derived using age and gender specific constants. A percentage FM of 30% for girls and 25% for boys were considered as cutoff levels for obesity. Two hundred and eighty two children (M/F: 158/124) were studied and 99 (80%) girls and 72 (45.5%) boys were obese based on % body fat. Eight (6.4%) girls and nine (5.7%) boys were obese based on International Obesity Task Force (IOTF) cutoff values. Percentage FM and WC centile charts were able to diagnose a significant proportion of children as true obese children. The FM and BMI were closely associated in both girls (r = 0.82, p < 0.001) and boys (r = 0.87, p < 0.001). Percentage FM and BMI had a very low but significant association; girls (r = 0.32, p < 0.001) and boys (r = 0.68, p < 0.001). FM had a significant association with WC and HC. BMI based cutoff values had a specificity of 100% but a very low sensitivity, varying between 8% and 23.6%. BMI is a poor indicator of the percentage fat and the commonly used cutoff values were not sensitive to detect cases of childhood obesity in Sri Lankan children.
Resumo:
Objectives: Obesity is a disease with excess body fat where health is adversely affected. Therefore it is prudent to make the diagnosis of obesity based on the measure of percentage body fat. Body composition of a group of Australian children of Sri Lankan origin were studied to evaluate the applicability of some bedside techniques in the measurement of percentage body fat. Methods: Height (H) and weight (W) was measured and BMI (W/H2) calculated. Bioelectrical impedance analysis (BIA) was measured using tetra polar technique with an 800 μA current of 50 Hz frequency. Total body water was used as a reference method and was determined by deuterium dilution and fat free mass and hence fat mass (FM) derived using age and gender specific constants. Percentage FM was estimated using four predictive equations, which used BIA and anthropometric measurements. Results: Twenty-seven boys and 15 girls were studied with mean ages being 9.1 years and 9.6 years, respectively. Girls had a significantly higher FM compared to boys. The mean percentage FM of boys (22.9 ± 8.7%) was higher than the limit for obesity and for girls (29.0 ± 6.0%) it was just below the cut-off. BMI was comparatively low. All but BIA equation in boys under estimated the percentage FM. The impedance index and weight showed a strong association with total body water (r 2 = 0.96, P < 0.001). Except for BIA in boys all other techniques under diagnosed obesity. Conclusions: Sri Lankan Australian children appear to have a high percentage of fat with a low BMI and some of the available indirect techniques are not helpful in the assessment of body composition. Therefore ethnic and/or population specific predictive equations have to be developed for the assessment of body composition, especially in a multicultural society using indirect methods such as BIA or anthropometry.
Resumo:
Background: Despite being the stiffest airway of the bronchial tree, the trachea undergoes significant deformation due to intrathoracic pressure during breathing. The mechanical properties of the trachea affect the flow in the airway and may contribute to the biological function of the lung. Method: A Fung-type strain energy density function was used to investigate the nonlinear mechanical behavior of tracheal cartilage. A bending test on pig tracheal cartilage was performed and a mathematical model for analyzing the deformation of tracheal cartilage was developed. The constants included in the strain energy density function were determined by fitting the experimental data. Result: The experimental data show that tracheal cartilage is a nonlinear material displaying higher strength in compression than in tension. When the compression forces varied from -0.02 to -0.03 N and from -0.03 to -0.04 N, the deformation ratios were 11.03±2.18% and 7.27±1.59%, respectively. Both were much smaller than the deformation ratios (20.01±4.49%) under tension forces of 0.02 to 0.01 N. The Fung-type strain energy density function can capture this nonlinear behavior very well, whilst the linear stress-strain relation cannot. It underestimates the stability of trachea by exaggerating the displacement in compression. This study may improve our understanding of the nonlinear behavior of tracheal cartilage and it may be useful for the future study on tracheal collapse behavior under physiological and pathological conditions.
Resumo:
The monosaccharide 2-O-sulfo-α-l-iduronic acid (IdoA2S) is one of the major components of glycosaminoglycans. The ability of molecular mechanics force fields to reproduce ring-puckering conformational equilibrium is important for the successful prediction of the free energies of interaction of these carbohydrates with proteins. Here we report unconstrained molecular dynamics simulations of IdoA2S monosaccharide that were carried out to investigate the ability of commonly used force fields to reproduce its ring conformational flexibility in aqueous solution. In particular, the distribution of ring conformer populations of IdoA2S was determined. The GROMOS96 force field with the SPC/E water potential can predict successfully the dominant skew-boat to chair conformational transition of the IdoA2S monosaccharide in aqueous solution. On the other hand, the GLYCAM06 force field with the TIP3P water potential sampled transitional conformations between the boat and chair forms. Simulations using the GROMOS96 force field showed no pseudorotational equilibrium fluctuations and hence no inter-conversion between the boat and twist boat ring conformers. Calculations of theoretical proton NMR coupling constants showed that the GROMOS96 force field can predict the skew-boat to chair conformational ratio in good agreement with the experiment, whereas GLYCAM06 shows worse agreement. The omega rotamer distribution about the C5–C6 bond was predicted by both force fields to have torsions around 10°, 190°, and 360°.
Resumo:
Scratch assays are difficult to reproduce. Here we identify a previously overlooked source of variability which could partially explain this difficulty. We analyse a suite of scratch assays in which we vary the initial degree of confluence (initial cell density). Our results indicate that the rate of re-colonisation is very sensitive to the initial density. To quantify the relative roles of cell migration and proliferation, we calibrate the solution of the Fisher–Kolmogorov model to cell density profiles to provide estimates of the cell diffusivity, D, and the cell proliferation rate, λ. This procedure indicates that the estimates of D and λ are very sensitive to the initial density. This dependence suggests that the Fisher–Kolmogorov model does not accurately represent the details of the collective cell spreading process, since this model assumes that D and λ are constants that ought to be independent of the initial density. Since higher initial cell density leads to enhanced spreading, we also calibrate the solution of the Porous–Fisher model to the data as this model assumes that the cell flux is an increasing function of the cell density. Estimates of D and λ associated with the Porous–Fisher model are less sensitive to the initial density, suggesting that the Porous–Fisher model provides a better description of the experiments.