240 resultados para Lane Theological Seminary
Resumo:
This book explores the interrelation of literacy and religion as practiced by Western Christians in, first, historical contexts and, second, in one contemporary church setting. Using both a case study and a Foucauldian theoretical framework, the book provides a sustained analysis of the reciprocal discursive construction of literacy, religiosity and identity in one Seventh-day Adventist Church community of Northern Australia. Critical linguistic and discourse analytic theory is used to disclose processes of theological (church), familial (home) and educational (school) normalisation of community members into regulated ways of hearing and speaking, reading and writing, being and believing. Detailed analyses of spoken and written texts taken from institutional and local community settings show how textual religion is an exemplary technology of the self, a politics constituted by canonical texts, interpretive norms, textual practices, ritualised events and sociopolitical protocols that, ultimately, are turned in upon the self. The purpose of these analyses is to show how, across denominational difference in belief (tradition) and practice, particular versions of self and society are constructed through economies of truth from text, enabling and constraining what can and cannot be spoken and enacted by believers.
Resumo:
Background Older adults may find it problematic to attend hospital appointments due to the difficulty associated with travelling to, within and from a hospital facility for the purpose of a face-to-face assessment. This study aims to investigate equivalence between telephone and face-to-face administration for the Frenchay Activities Index (FAI) and the Euroqol-5D (EQ-5D) generic health-related quality of life instrument amongst an older adult population. Methods Patients aged >65 (n = 53) who had been discharged to the community following an acute hospital admission underwent telephone administration of the FAI and EQ-5D instruments seven days prior to attending a hospital outpatient appointment where they completed a face-to-face administration of these instruments. Results Overall, 40 subjects' datasets were complete for both assessments and included in analysis. The FAI items had high levels of agreement between the two modes of administration (item kappa's ranged 0.73 to 1.00) as did the EQ-5D (item kappa's ranged 0.67–0.83). For the FAI, EQ-5D VAS and EQ-5D utility score, intraclass correlation coefficients were 0.94, 0.58 and 0.82 respectively with paired t-tests indicating no significant systematic difference (p = 0.100, p = 0.690 and p = 0.290 respectively). Conclusion Telephone administration of the FAI and EQ-5D instruments provides comparable results to face-to-face administration amongst older adults deemed to have cognitive functioning intact at a basic level, indicating that this is a suitable alternate approach for collection of this information.
Resumo:
Driving on motorways has largely been reduced to a lane-keeping task with cruise control. Rapidly, drivers are likely to get bored with such a task and take their attention away from the road. This is of concern in terms of road safety – particularly for professional drivers - since inattention has been identified as one of the main contributing factors to road crashes and is estimated to be involved in 20 to 30% of these crashes. Furthermore, drivers are not aware that their vigilance level has decreased and that their driving performance is impaired. Intelligent Transportation System (ITS) intervention can be used as a countermeasure against vigilance decrement. This paper aims to identify a variety of metrics impacted during monotonous driving - ranging from vehicle data to physiological variables - and relate them to two monotonous factors namely the monotony of the road design (straightness) and the monotony of the environment (landscape, signage, traffic). Data are collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device (N=25 participants). The two monotonous factors are varied (high and low) leading to the use of four different driving scenarios (40 minutes each). We show with Generalised Linear Mixed Models that driver performance decreases faster when the road is monotonous. We also highlight that road monotony impairs a variety of driving performance and vigilance measures, ranging from speed, lateral position of the vehicle to physiological measurements such as heart rate variability, blink frequency and electrodermal activity. This study informs road designers of the importance of having a varied road environment. It also provides a range of metrics that can be used to detect in real-time the impairment of driving performance on monotonous roads. Such knowledge could result in the development of an in-vehicle device warning drivers at early signs of driving performance impairment on monotonous roads.
Resumo:
The over representation of novice drivers in crashes is alarming. Research indicates that one in five drivers’ crashes within their first year of driving. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the drive. This paper presents a system that evaluates the data stream acquired from multiple in-vehicle sensors (acquired from Driver Vehicle Environment-DVE) using fuzzy rules and classifies the driving manoeuvres (i.e. overtake, lane change and turn) as low risk or high risk. The fuzzy rules use parameters such as following distance, frequency of mirror checks, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvre to assess risk. The fuzzy rules to estimate risk are designed after analysing the selected driving manoeuvres performed by driver trainers. This paper focuses mainly on the difference in gaze pattern for experienced and novice drivers during the selected manoeuvres. Using this system, trainers of novice drivers would be able to empirically evaluate and give feedback to the novice drivers regarding their driving behaviour.
Resumo:
The global impact of an ever-increasing population-base combined with dangerously depleted natural resources highlights the urgent need for changes in human lifestyles and land-use patterns. To achieve more equitable and sustainable land use, it is imperative that populations live within the carrying capacity of their natural assets in a manner more accountable to and ethically responsible for the land which sustains them. Our society’s very survival may well depend on worldwide acceptance of the carrying capacity imperative as a principle of personal, political, economic, educational and planning responsibility. This theoretically-focused research identifies, examines and compares a range of methodological approaches to carrying capacity assessment and considers their relevance to future spatial planning. It also addresses existing gaps in current methodologies and suggests avenues for improvement. A set of eleven key criteria are employed to compare various existing carrying capacity assessment models. These criteria include whole-systems analysis, dynamic responses, levels of impact and risk, systemic constraints, applicability to future planning and the consideration of regional and local boundary delineation. This research finds that while some existing methodologies offer significant insights into the assessment of population carrying capacities, a comprehensive model is yet to be developed. However, it is suggested that by combining successful components from various authors, and collecting a range of interconnected data, a practical and workable systems-based model may be achievable in the future.
Resumo:
While some existing carrying capacity methodologies offer significant insights into the assessment of population carrying capacities, a comprehensive model is yet to be developed. This research identifies, examines and compares a range of methodological approaches to carrying capacity assessment and considers their relevance to future spatial planning. A range of key criteria are employed to compare various existing carrying capacity assessment models. These criteria include integrated systems analysis, dynamic responses, levels of risk, systemic constraints, applicability to future planning and the consideration of regional boundary delineation. It is suggested that by combining successful components from various authors, and collecting a range of interconnected data, a practical and workable system-based model may be achievable in the future.
Resumo:
This paper takes Kent and Taylor’s (2002) call to develop a dialogic theory of public relations and suggests that a necessary first step is the modelling of the process of dialogic communication in public relations. In order to achieve this, extant literature from a range of fields is reviewed, seeking to develop a definition of dialogic communication that is meaningful to the practice of contemporary public relations. A simple transmission model of communication is used as a starting point. This is synthesised with concepts relating specifically to dialogue, taken here in its broadest sense rather than defined as any one particular outcome. The definition that emerges from this review leads to the conclusion that dialogic communication in public relations involves the interaction of three roles – those of sender, receiver, and responder. These three roles are shown to be adopted at different times by both participants involved in dialogic communication. It is further suggested that variations occur in how these roles are conducted: the sender and receiver roles can be approached in a passive or an active way, while the responder role can be classified as being either resistant or responsive to the information received in dialogic communication. The final modelling of the definition derived provides a framework which can be tested in the field to determine whether variations in the conduct of the roles in dialogic communication actually exist, and if so, whether they can be linked to the different types of outcome from dialogic communication identified previously in the literature.
Resumo:
Human error, its causes and consequences, and the ways in which it can be prevented, remain of great interest to road safety practitioners. This paper presents the findings derived from an on-road study of driver errors in which 25 participants drove a pre-determined route using MUARC's On-Road Test Vehicle (ORTeV). In-vehicle observers recorded the different errors made, and a range of other data was collected, including driver verbal protocols, forward, cockpit and driver video, and vehicle data (speed, braking, steering wheel angle, lane tracking etc). Participants also completed a post trial cognitive task analysis interview. The drivers tested made a range of different errors, with speeding violations, both intentional and unintentional, being the most common. Further more detailed analysis of a sub-set of specific error types indicates that driver errors have various causes, including failures in the wider road 'system' such as poor roadway design, infrastructure failures and unclear road rules. In closing, a range of potential error prevention strategies, including intelligent speed adaptation and road infrastructure design, are discussed.
Resumo:
Monotony has been identified as a contributing factor to road crashes. Drivers’ ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks, such as driving on Australian rural roads, many of which are monotonous by nature. Highway design in particular attempts to reduce the driver’s task to a merely lane-keeping one. Such a task provides little stimulation and is monotonous, thus affecting the driver’s attention which is no longer directed towards the road. Inattention contributes to crashes, especially for professional drivers. Monotony has been studied mainly from the endogenous perspective (for instance through sleep deprivation) without taking into account the influence of the task itself (repetitiveness) or the surrounding environment. The aim and novelty of this thesis is to develop a methodology (mathematical framework) able to predict driver lapses of vigilance under monotonous environments in real time, using endogenous and exogenous data collected from the driver, the vehicle and the environment. Existing approaches have tended to neglect the specificity of task monotony, leaving the question of the existence of a “monotonous state” unanswered. Furthermore the issue of detecting vigilance decrement before it occurs (predictions) has not been investigated in the literature, let alone in real time. A multidisciplinary approach is necessary to explain how vigilance evolves in monotonous conditions. Such an approach needs to draw on psychology, physiology, road safety, computer science and mathematics. The systemic approach proposed in this study is unique with its predictive dimension and allows us to define, in real time, the impacts of monotony on the driver’s ability to drive. Such methodology is based on mathematical models integrating data available in vehicles to the vigilance state of the driver during a monotonous driving task in various environments. The model integrates different data measuring driver’s endogenous and exogenous factors (related to the driver, the vehicle and the surrounding environment). Electroencephalography (EEG) is used to measure driver vigilance since it has been shown to be the most reliable and real time methodology to assess vigilance level. There are a variety of mathematical models suitable to provide a framework for predictions however, to find the most accurate model, a collection of mathematical models were trained in this thesis and the most reliable was found. The methodology developed in this research is first applied to a theoretically sound measure of sustained attention called Sustained Attention Response to Task (SART) as adapted by Michael (2010), Michael and Meuter (2006, 2007). This experiment induced impairments due to monotony during a vigilance task. Analyses performed in this thesis confirm and extend findings from Michael (2010) that monotony leads to an important vigilance impairment independent of fatigue. This thesis is also the first to show that monotony changes the dynamics of vigilance evolution and tends to create a “monotonous state” characterised by reduced vigilance. Personality traits such as being a low sensation seeker can mitigate this vigilance decrement. It is also evident that lapses in vigilance can be predicted accurately with Bayesian modelling and Neural Networks. This framework was then applied to the driving task by designing a simulated monotonous driving task. The design of such task requires multidisciplinary knowledge and involved psychologist Rebecca Michael. Monotony was varied through both the road design and the road environment variables. This experiment demonstrated that road monotony can lead to driving impairment. Particularly monotonous road scenery was shown to have the most impact compared to monotonous road design. Next, this study identified a variety of surrogate measures that are correlated with vigilance levels obtained from the EEG. Such vigilance states can be predicted with these surrogate measures. This means that vigilance decrement can be detected in a car without the use of an EEG device. Amongst the different mathematical models tested in this thesis, only Neural Networks predicted the vigilance levels accurately. The results of both these experiments provide valuable information about the methodology to predict vigilance decrement. Such an issue is quite complex and requires modelling that can adapt to highly inter-individual differences. Only Neural Networks proved accurate in both studies, suggesting that these models are the most likely to be accurate when used on real roads or for further research on vigilance modelling. This research provides a better understanding of the driving task under monotonous conditions. Results demonstrate that mathematical modelling can be used to determine the driver’s vigilance state when driving using surrogate measures identified during this study. This research has opened up avenues for future research and could result in the development of an in-vehicle device predicting driver vigilance decrement. Such a device could contribute to a reduction in crashes and therefore improve road safety.
Resumo:
The advent of data breach notification laws in the United States (US) has unearthed a significant problem involving the mismanagement of personal information by a range of public and private sector organisations. At present, there is currently no statutory obligation under Australian law requiring public or private sector organisations to report a data breach of personal information to law enforcement agencies or affected persons. However, following a comprehensive review of Australian privacy law, the Australian Law Reform Commission (ALRC) has recommended the introduction of a mandatory data breach notification scheme. The issue of data breach notification has ignited fierce debate amongst stakeholders, especially larger private sector entities. The purpose of this article is to document the perspectives of key industry and government representatives to identify their standpoints regarding an appropriate regulatory approach to data breach notification in Australia.
Resumo:
Public and private sector organisations are now able to capture and utilise data on a vast scale, thus heightening the importance of adequate measures for protecting unauthorised disclosure of personal information. In this respect, data breach notification has emerged as an issue of increasing importance throughout the world. It has been the subject of law reform in the United States and in other jurisdictions. This article reviews US, Australian and EU legal developments regarding the mandatory notification of data breaches. The authors highlight areas of concern based on the extant US experience that require further consideration in Australia and in the EU.
Resumo:
Crash prediction models are used for a variety of purposes including forecasting the expected future performance of various transportation system segments with similar traits. The influence of intersection features on safety have been examined extensively because intersections experience a relatively large proportion of motor vehicle conflicts and crashes compared to other segments in the transportation system. The effects of left-turn lanes at intersections in particular have seen mixed results in the literature. Some researchers have found that left-turn lanes are beneficial to safety while others have reported detrimental effects on safety. This inconsistency is not surprising given that the installation of left-turn lanes is often endogenous, that is, influenced by crash counts and/or traffic volumes. Endogeneity creates problems in econometric and statistical models and is likely to account for the inconsistencies reported in the literature. This paper reports on a limited-information maximum likelihood (LIML) estimation approach to compensate for endogeneity between left-turn lane presence and angle crashes. The effects of endogeneity are mitigated using the approach, revealing the unbiased effect of left-turn lanes on crash frequency for a dataset of Georgia intersections. The research shows that without accounting for endogeneity, left-turn lanes ‘appear’ to contribute to crashes; however, when endogeneity is accounted for in the model, left-turn lanes reduce angle crash frequencies as expected by engineering judgment. Other endogenous variables may lurk in crash models as well, suggesting that the method may be used to correct simultaneity problems with other variables and in other transportation modeling contexts.
Resumo:
It is important to examine the nature of the relationships between roadway, environmental, and traffic factors and motor vehicle crashes, with the aim to improve the collective understanding of causal mechanisms involved in crashes and to better predict their occurrence. Statistical models of motor vehicle crashes are one path of inquiry often used to gain these initial insights. Recent efforts have focused on the estimation of negative binomial and Poisson regression models (and related deviants) due to their relatively good fit to crash data. Of course analysts constantly seek methods that offer greater consistency with the data generating mechanism (motor vehicle crashes in this case), provide better statistical fit, and provide insight into data structure that was previously unavailable. One such opportunity exists with some types of crash data, in particular crash-level data that are collected across roadway segments, intersections, etc. It is argued in this paper that some crash data possess hierarchical structure that has not routinely been exploited. This paper describes the application of binomial multilevel models of crash types using 548 motor vehicle crashes collected from 91 two-lane rural intersections in the state of Georgia. Crash prediction models are estimated for angle, rear-end, and sideswipe (both same direction and opposite direction) crashes. The contributions of the paper are the realization of hierarchical data structure and the application of a theoretically appealing and suitable analysis approach for multilevel data, yielding insights into intersection-related crashes by crash type.
Resumo:
Large trucks are involved in a disproportionately small fraction of the total crashes but a disproportionately large fraction of fatal crashes. Large truck crashes often result in significant congestion due to their large physical dimensions and from difficulties in clearing crash scenes. Consequently, preventing large truck crashes is critical to improving highway safety and operations. This study identifies high risk sites (hot spots) for large truck crashes in Arizona and examines potential risk factors related to the design and operation of the high risk sites. High risk sites were identified using both state of the practice methods (accident reduction potential using negative binomial regression with long crash histories) and a newly proposed method using Property Damage Only Equivalents (PDOE). The hot spots identified via the count model generally exhibited low fatalities and major injuries but large minor injuries and PDOs, while the opposite trend was observed using the PDOE methodology. The hot spots based on the count model exhibited large AADTs, whereas those based on the PDOE showed relatively small AADTs but large fractions of trucks and high posted speed limits. Documented site investigations of hot spots revealed numerous potential risk factors, including weaving activities near freeway junctions and ramps, absence of acceleration lanes near on-ramps, small shoulders to accommodate large trucks, narrow lane widths, inadequate signage, and poor lighting conditions within a tunnel.
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.