108 resultados para LDPC, CUDA, GPGPU, computing, GPU, DVB, S2, SDR
Resumo:
The final shape of the "Internet of Things" ubiquitous computing promises relies on a cybernetic system of inputs (in the form of sensory information), computation or decision making (based on the prefiguration of rules, contexts, and user-generated or defined metadata), and outputs (associated action from ubiquitous computing devices). My interest in this paper lies in the computational intelligences that suture these positions together, and how positioning these intelligences as autonomous agents extends the dialogue between human-users and ubiquitous computing technology. Drawing specifically on the scenarios surrounding the employment of ubiquitous computing within aged care, I argue that agency is something that cannot be traded without serious consideration of the associated ethics.
Resumo:
On obstacle-cluttered construction sites where heavy equipment is in use, safety issues are of major concern. The main objective of this paper is to develop a framework with algorithms for obstacle avoidance and path planning based on real-time three-dimensional job site models to improve safety during equipment operation. These algorithms have the potential to prevent collisions between heavy equipment vehicles and other on-site objects. In this study, algorithms were developed for image data acquisition, real-time 3D spatial modeling, obstacle avoidance, and shortest path finding and were all integrated to construct a comprehensive collision-free path. Preliminary research results show that the proposed approach is feasible and has the potential to be used as an active safety feature for heavy equipment.
Resumo:
This special issue of the Journal of Urban Technology brings together five articles that are based on presentations given at the Street Computing workshop held on 24 November 2009 in Melbourne in conjunction with the Australian Computer-Human Interaction conference (OZCHI 2009). Our own article introduces the Street Computing vision and explores the potential, challenges and foundations of this research vision. In order to do so, we first look at the currently available sources of information and discuss their link to existing research efforts. Section 2 then introduces the notion of Street Computing and our research approach in more detail. Section 3 looks beyond the core concept itself and summarises related work in this field of interest.
Resumo:
From location-aware computing to mining the social web, representations of context have promised to make better software applications. The opportunities and challenges of context-aware computing from representational, situated and interactional perspectives have been well documented, but arguments from the perspective of design are somewhat disparate. This paper draws on both theoretical perspectives and a design framing, using the problem of designing a social mobile agile ridesharing system, in order to reflect upon and call for broader design approaches for context-aware computing and human-computer Interaction research in general.
Resumo:
Software as a Service (SaaS) is gaining more and more attention from software users and providers recently. This has raised many new challenges to SaaS providers in providing better SaaSes that suit everyone needs at minimum costs. One of the emerging approaches in tackling this challenge is by delivering the SaaS as a composite SaaS. Delivering it in such an approach has a number of benefits, including flexible offering of the SaaS functions and decreased cost of subscription for users. However, this approach also introduces new problems for SaaS resource management in a Cloud data centre. We present the problem of composite SaaS resource management in Cloud data centre, specifically on its initial placement and resource optimization problems aiming at improving the SaaS performance based on its execution time as well as minimizing the resource usage. Our approach differs from existing literature because it addresses the problems resulting from composite SaaS characteristics, where we focus on the SaaS requirements, constraints and interdependencies. The problems are tackled using evolutionary algorithms. Experimental results demonstrate the efficiency and the scalability of the proposed algorithms.
Resumo:
Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA.
In the pursuit of effective affective computing : the relationship between features and registration
Resumo:
For facial expression recognition systems to be applicable in the real world, they need to be able to detect and track a previously unseen person's face and its facial movements accurately in realistic environments. A highly plausible solution involves performing a "dense" form of alignment, where 60-70 fiducial facial points are tracked with high accuracy. The problem is that, in practice, this type of dense alignment had so far been impossible to achieve in a generic sense, mainly due to poor reliability and robustness. Instead, many expression detection methods have opted for a "coarse" form of face alignment, followed by an application of a biologically inspired appearance descriptor such as the histogram of oriented gradients or Gabor magnitudes. Encouragingly, recent advances to a number of dense alignment algorithms have demonstrated both high reliability and accuracy for unseen subjects [e.g., constrained local models (CLMs)]. This begs the question: Aside from countering against illumination variation, what do these appearance descriptors do that standard pixel representations do not? In this paper, we show that, when close to perfect alignment is obtained, there is no real benefit in employing these different appearance-based representations (under consistent illumination conditions). In fact, when misalignment does occur, we show that these appearance descriptors do work well by encoding robustness to alignment error. For this work, we compared two popular methods for dense alignment-subject-dependent active appearance models versus subject-independent CLMs-on the task of action-unit detection. These comparisons were conducted through a battery of experiments across various publicly available data sets (i.e., CK+, Pain, M3, and GEMEP-FERA). We also report our performance in the recent 2011 Facial Expression Recognition and Analysis Challenge for the subject-independent task.
Resumo:
A composite SaaS (Software as a Service) is a software that is comprised of several software components and data components. The composite SaaS placement problem is to determine where each of the components should be deployed in a cloud computing environment such that the performance of the composite SaaS is optimal. From the computational point of view, the composite SaaS placement problem is a large-scale combinatorial optimization problem. Thus, an Iterative Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The ICCGA can find reasonable quality of solutions. However, its computation time is noticeably slow. Aiming at improving the computation time, we propose an unsynchronized Parallel Cooperative Co-evolutionary Genetic Algorithm (PCCGA) in this paper. Experimental results have shown that the PCCGA not only has quicker computation time, but also generates better quality of solutions than the ICCGA.
Resumo:
Cloud computing has emerged as a major ICT trend and has been acknowledged as a key theme of industry by prominent ICT organisations. However, one of the major challenges that face the cloud computing concept and its global acceptance is how to secure and protect the data that is the property of the user. The geographic location of cloud data storage centres is an important issue for many organisations and individuals due to the regulations and laws that require data and operations to reside in specific geographic locations. Thus, data owners may need to ensure that their cloud providers do not compromise the SLA contract and move their data into another geographic location. This paper introduces an architecture for a new approach for geographic location assurance, which combines the proof of storage protocol (POS) and the distance-bounding protocol. This allows the client to check where their stored data is located, without relying on the word of the cloud provider. This architecture aims to achieve better security and more flexible geographic assurance within the environment of cloud computing.
Resumo:
Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1=n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal. Funding source Cancer Australia (Department of Health and Ageing) Research Grant 614217
Resumo:
With the widespread application of healthcare Information and Communication Technology (ICT), constructing a stable and sustainable data sharing circumstance has attracted rapidly growing attention in both academic research area and healthcare industry. Cloud computing is one of long dreamed visions of Healthcare Cloud (HC), which matches the need of healthcare information sharing directly to various health providers over the Internet, regardless of their location and the amount of data. In this paper, we discuss important research tool related to health information sharing and integration in HC and investigate the arising challenges and issues. We describe many potential solutions to provide more opportunities to implement EHR cloud. As well, we introduce the development of a HC related collaborative healthcare research example, thus illustrating the prospective of applying Cloud Computing in the health information science research.
Resumo:
Despite the compelling case for moving towards cloud computing, the upstream oil & gas industry faces several technical challenges—most notably, a pronounced emphasis on data security, a reliance on extremely large data sets, and significant legacy investments in information technology infrastructure—that make a full migration to the public cloud difficult at present. Private and hybrid cloud solutions have consequently emerged within the industry to yield as much benefit from cloud-based technologies as possible while working within these constraints. This paper argues, however, that the move to private and hybrid clouds will very likely prove only to be a temporary stepping stone in the industry's technological evolution. By presenting evidence from other market sectors that have faced similar challenges in their journey to the cloud, we propose that enabling technologies and conditions will probably fall into place in a way that makes the public cloud a far more attractive option for the upstream oil & gas industry in the years ahead. The paper concludes with a discussion about the implications of this projected shift towards the public cloud, and calls for more of the industry's services to be offered through cloud-based “apps.”
Resumo:
In the modern connected world, pervasive computing has become reality. Thanks to the ubiquity of mobile computing devices and emerging cloud-based services, the users permanently stay connected to their data. This introduces a slew of new security challenges, including the problem of multi-device key management and single-sign-on architectures. One solution to this problem is the utilization of secure side-channels for authentication, including the visual channel as vicinity proof. However, existing approaches often assume confidentiality of the visual channel, or provide only insufficient means of mitigating a man-in-the-middle attack. In this work, we introduce QR-Auth, a two-step, 2D barcode based authentication scheme for mobile devices which aims specifically at key management and key sharing across devices in a pervasive environment. It requires minimal user interaction and therefore provides better usability than most existing schemes, without compromising its security. We show how our approach fits in existing authorization delegation and one-time-password generation schemes, and that it is resilient to man-in-the-middle attacks.