87 resultados para Kinases MAPK
Resumo:
Recent developments in genomic technologies have resulted in increased understanding of pathogenic mechanisms and emphasized the importance of central survival pathways. Here, we use a novel bioinformatic based integrative genomic profiling approach to elucidate conserved mechanisms of lymphomagenesis in the three commonest non-Hodgkin's lymphoma (NHL) entities: diffuse large B-cell lymphoma, follicular lymphoma, and B-cell chronic lymphocytic leukemia. By integrating genome-wide DNA copy number analysis and transcriptome profiling of tumor cohorts, we identified genetic lesions present in each entity and highlighted their likely target genes. This revealed a significant enrichment of components of both the apoptosis pathway and the mitogen activated protein kinase pathway, including amplification of the MAP3K12 locus in all three entities, within the set of genes targeted by genetic alterations in these diseases. Furthermore, amplification of 12p13.33 was identified in all three entities and found to target the FOXM1 oncogene. Amplification of FOXM1 was subsequently found to be associated with an increased MYC oncogenic signaling signature, and siRNA-mediated knock-down of FOXM1 resulted in decreased MYC expression and induced G2 arrest. Together, these findings underscore genetic alteration of the MAPK and apoptosis pathways, and genetic amplification of FOXM1 as conserved mechanisms of lymphomagenesis in common NHL entities. Integrative genomic profiling identifies common central survival mechanisms and highlights them as attractive targets for directed therapy.
Resumo:
Background: The insulin-like growth factor (IGF) system is composed of ligands and receptors which regulate cell proliferation, survival, differentiation and migration. Some functions are regulated via intracellular signaling cascades, others by involvement of the extracellular milieu, including binding proteins and other extracellular matrix proteins. However, understanding of their functions and the exact nature of these interactions remains incomplete. Methods: IGF-I was PEGylated at its lysine sites - K27, K65 and K68. Binding of PEG-IGF-I to the IGFBPs was analyzed using BIAcore and its ability to activate the IGF-IR was assessed using IGF-IR phosphorylation assay. Furthermore, functional consequences of PEGylating the lysine residues of IGF-I was investigated using cell viability and cell migration assays. In addition, particular downstream signaling pathways regularly implicated in these mechanisms were also dissected using phospho-AKT and phospho-ERK1/2 assays. Results: In this study, IGF-I specifically PEGylated at lysine 27 (PEG-K27), 65 (PEG-K65) or 68 (PEG-K68) were employed. Receptor phosphorylation was only reduced by 2-fold with PEG-K65 and PEG-K68 over all the time points tested, and as observed in two cell types, 3T3 fibroblasts and MCF-7 breast cancer cells. PEGylation at K27 resulted in a much larger effect, with more than 10-fold lower activation for 3T3 fibroblasts and a ~3 fold reduced IGF-IR activation for MCF-7 breast cancer cells over 15 minutes. In addition, all PEG-IGF-I variants demonstrated a ten-fold reduction in the association rate to IGF binding proteins (IGFBPs). Functionally, all PEG variants completely lost their ability to induce cell migration in the presence of IGFBP-3/vitronectin (VN) complexes as compared to IGF-I; in contrast, cell viability was fully preserved. Further investigations into the downstream signaling pathways revealed that the PI3-K/AKT pathway was preferentially affected upon treatment with the PEG-IGF-I variants compared to the MAPK/ERK pathway. Conclusion: PEGylation of IGF-I has an impact on cell migration but not cell viability. General significance: PEG-IGF-I may differentially modulate IGF-I mediated functions that are dependent on its interaction with its receptor as well as key extracellular proteins such as VN and IGFBPs.
Resumo:
In this study, we have demonstrated that the preproghrelin derived hormones, ghrelin and obestatin, may play a role in ovarian cancer. Ghrelin and obestatin stimulated an increase in cell migration in ovarian cancer cell lines and may play a role in cancer progression. Ovarian cancer is the leading cause of death among gynaecological cancers and is the sixth most common cause of cancer-related deaths in women in developed countries. As ovarian cancer is difficult to diagnose at a low tumour grade, two thirds of ovarian cancers are not diagnosed until the late stages of cancer development resulting in a poor prognosis for the patient. As a result, current treatment methods are limited and not ideal. There is an urgent need for improved diagnostic markers, as well better therapeutic approaches and adjunctive therapies for this disease. Ghrelin has a number of important physiological effects, including roles in appetite regulation and the stimulation of growth hormone release. It is also involved in regulating the immune, cardiovascular and reproductive systems and regulates sleep, memory and anxiety, and energy metabolism. Over the last decade, the ghrelin axis, (which includes the hormones ghrelin and obestatin and their receptors), has been implicated in the pathogenesis of many human diseases and it may t may also play an important role in the development of cancer. Ghrelin is a 28 amino acid peptide hormone that exists in two forms. Acyl ghrelin (usually referred to as ghrelin), has a unique n-octanoic acid post-translational modification (which is catalysed by ghrelin O-acyltransferase, GOAT), and desacyl ghrelin, which is a non-octanoylated form. Octanoylated ghrelin acts through the growth hormone secretagogue receptor type 1a (GHSR1a). GHSR1b, an alternatively spliced isoform of GHSR, is C-terminally truncated and does not bind ghrelin. Ghrelin has been implicated in the pathophysiology of a number of diseases Obestatin is a 23 amino acid, C-terminally amidated peptide which is derived from preproghrelin. Although GPR39 was originally thought to be the obestatin receptor this has been disproven, and its receptor remains unknown. Obestatin may have as diverse range of roles as ghrelin. Obestatin improves memory, inhibits thirst and anxiety, increases pancreatic juice secretion and has cardioprotective effects. Obestatin also has been shown to regulate cell proliferation, differentiation and apoptosis in some cell types. Prior to this study, little was known regarding the functions and mechanisms of action ghrelin and obestatin in ovarian cancer. In this study it was demonstrated that the full length ghrelin, GHSR1b and GOAT mRNA transcripts were expressed in all of the ovarian-derived cell lines examined (SKOV3, OV-MZ-6 and hOSE 17.1), however, these cell lines did not express GHSR1a. Ovarian cancer tissue of varying stages and normal ovarian tissue expressed the coding region for ghrelin, obestatin, and GOAT, but not GHSR1a, or GHSR1b. No correlations between cancer grade and the level of expression of these transcripts were observed. This study demonstrated for the first time that both ghrelin and obestatin increase cell migration in ovarian cancer cell lines. Treatment with ghrelin (for 72 hours) significantly increased cell migration in the SKOV3 and OV-MZ-6 ovarian cancer cell lines. Ghrelin (100 nM) stimulated cell migration in the SKOV3 (2.64 +/- 1.08 fold, p <0.05) and OV-MZ-6 (1.65 +/- 0.31 fold, p <0.05) ovarian cancer cell lines, but not in the representative normal cell line hOSE 17.1. This increase in migration was not accompanied by an increase in cell invasion through Matrigel. In contrast to other cancer types, ghrelin had no effect on proliferation. Ghrelin treatment (10nM) significantly decreased attachment of the SKOV3 ovarian cancer cell line to collagen IV (24.7 +/- 10.0 %, p <0.05), however, there were no changes in attachment to the other extracellular matrix molecules (ECM) tested (fibronectin, vitronectin and collagen I), and there were no changes in attachment to any of the ECM molecules in the OV-MZ-6 or hOSE 17.1 cell lines. It is, therefore, unclear if ghrelin plays a role in cell attachment in ovarian cancer. As ghrelin has previously been demonstrated to signal through the ERK1/2 pathway in cancer, we investigated ERK1/2 signalling in ovarian cancer cell lines. In the SKOV3 ovarian cancer cell line, a reduction in ERK1/2 phosphorylation (0.58 fold +/- 0.23, p <0.05) in response to 100 nM ghrelin treatment was observed, while no significant change in ERK1/2 signalling was seen in the OV-MZ-6 cell line with treatment. This suggests that this pathway is unlikely to be involved in mediating the increased migration seen in the ovarian cancer cell lines with ghrelin treatment. In this study ovarian cancer tissue of varying stages and normal ovarian tissue expressed the coding region for obestatin, however, no correlation between cancer grade and level of obestatin transcript expression was observed. In the ovarian-derived cell lines studied (SKOV3, OV-MZ-6 and hOSE 17.1) it was demonstrated that the full length preproghrelin mRNA transcripts were expressed in all cell lines, suggesting they have the ability to produce mature obestatin. This is the first study to demonstrate that obestatin stimulates cell migration and cell invasion. Obestatin induced a significant increase in migration in the SKOV3 ovarian cancer cell line with 10 nM (2.80 +/- 0.52 fold, p <0.05) and 100 nM treatments (3.12 +/- 0.68 fold, p <0.05) and in the OV-MZ-6 cancer cell line with 10 nM (2.04 +/- 0.10 fold, p <0.01) and 100 nM treatments (2.00 +/- 0.37 fold, p <0.05). Obestatin treatment did no affect cell migration in the hOSE 17.1normal ovarian epithelial cell line. Obestatin treatment (100 nM) also stimulated a significant increase in cell invasion in the OV-MZ-6 ovarian cancer cell line (1.45 fold +/- 0.13, p <0.05) and in the hOSE17.1 normal ovarian cell line cells (1.40 fold +/- 0.04 and 1.55 fold +/- 0.05 respectively, p <0.01) with 10 nM and 100 nM treatments. Obestatin treatment did not stimulate cell invasion in the SKOV3 ovarian cancer cell line. This lack of obestatin-stimulated invasion in the SKOV3 cell line may be a cell line specific result. In this study, obestatin did not stimulate cell proliferation in the ovarian cell lines and it has previously been shown to have no effect on cell proliferation in the BON-1 pancreatic neuroendocrine and GC rat somatotroph tumour cell lines. In contrast, obestatin has been shown to affect cell proliferation in gastric and thyroid cancer cell lines, and in some normal cell lines. Obestatin also had no effect on attachment of any of the cell lines to any of the ECM components tested (fibronectin, vitronectin, collagen I and collagen IV). The mechanism of action of obestatin was investigated further using a two dimensional-difference in gel electrophoresis (2D-DIGE) proteomic approach. After treatment with obestating (0, 10 and 100 nM), SKOV3 ovarian cancer and hOSE 17.1 normal ovarian cell lines were collected and 2D-DIGE analysis and mass spectrometry were performed to identify proteins that were differentially expressed in response to treatment. Twenty-six differentially expressed proteins were identified and analysed using Ingenuity Pathway Analysis (IPA). This linked 16 of these proteins in a network. The analysis suggested that the ERK1/2 MAPK pathway was a major mediator of obestatin action. ERK1/2 has previously been shown to be associated with obestatin-stimulated cell proliferation and with the anti-apoptotic effects of obestatin. Activation of the ERK1/2 signalling pathway by obestatin was, therefore, investigated in the SKOV3 and OV-MZ-6 ovarian cancer cell lines using anti-active antibodies and Western immunoblots. Obestatin treatment significantly decreased ERK1/2 phosphorylation at higher obestatin concentrations in both the SKOV3 (100 nM and 1000 nM) and OV-MZ-6 (1000 nM) cell lines compared to the untreated controls. Currently, very little is known about obestatin signalling in cancer. This thesis has demonstrated for the first time that the ghrelin axis may play a role in ovarian cancer migration. Ghrelin and obestatin increased cell migration in ovarian cancer cell lines, indicating that they may be a useful target for therapies that reduce ovarian cancer progression. Further studies investigating the role of the ghrelin axis using in vivo ovarian cancer metastasis models are warranted.
Resumo:
Recently, it has been suggested osteocytes control the activities of bone formation (osteoblasts) and resorption (osteoclast), indicating their important regulatory role in bone remodelling. However, to date, the role of osteocytes in controlling bone vascularisation remains unknown. Our aim was to investigate the interaction between endothelial cells and osteocytes and to explore the possible molecular mechanisms during angiogenesis. To model osteocyte/endothelial cell interactions, we co-cultured osteocyte cell line (MLOY4) with endothelial cell line (HUVECs). Co-cultures were performed in 1:1 mixture of osteocytes and endothelial cells or by using the conditioned media (CM) transfer method. Real-time cell migration of HUVECs was measured with the transwell migration assay and xCELLigence system. Expression levels of angiogenesis- related genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of vascular endothelial growth factor (VEGF) and mitogen-activated phosphorylated kinase (MAPK) signaling were monitored by western blotting using relevant antibodies and inhibitors. During the bone formation, it was noted that osteocyte dendritic processes were closely connected to the blood vessels. The CM generated from MLOY4 cells-activated proliferation, migration, tube-like structure formation, and upregulation of angiogenic genes in endothelial cells suggesting that secretory factor(s) from osteocytes could be responsible for angiogenesis. Furthermore, we identified that VEGF secreted from MLOY4-activated VEGFR2–MAPK–ERK-signaling pathways in HUVECs. Inhibiting VEGF and/or MAPK–ERK pathways abrogated osteocyte-mediated angiogenesis in HUVEC cells. Our data suggest an important role of osteocytes in regulating angiogenesis.
Resumo:
Individual variability in the acquisition, consolidation and extinction of conditioned fear potentially contributes to the development of fear pathology including posttraumatic stress disorder (PTSD). Pavlovian fear conditioning is a key tool for the study of fundamental aspects of fear learning. Here, we used a selected mouse line of High and Low Pavlovian conditioned fear created from an advanced intercrossed line (AIL) in order to begin to identify the cellular basis of phenotypic divergence in Pavlovian fear conditioning. We investigated whether phosphorylated MAPK (p44/42 ERK/MAPK), a protein kinase required in the amygdala for the acquisition and consolidation of Pavlovian fear memory, is differentially expressed following Pavlovian fear learning in the High and Low fear lines. We found that following Pavlovian auditory fear conditioning, High and Low line mice differ in the number of pMAPK-expressing neurons in the dorsal sub nucleus of the lateral amygdala (LAd). In contrast, this difference was not detected in the ventral medial (LAvm) or ventral lateral (LAvl) amygdala sub nuclei or in control animals. We propose that this apparent increase in plasticity at a known locus of fear memory acquisition and consolidation relates to intrinsic differences between the two fear phenotypes. These data provide important insights into the micronetwork mechanisms encoding phenotypic differences in fear. Understanding the circuit level cellular and molecular mechanisms that underlie individual variability in fear learning is critical for the development of effective treatment of fear-related illnesses such as PTSD.
Resumo:
Background: A recent study by Dhillon et al. [12], identified both angioinvasion and mTOR as prognostic biomarkers for poor survival in early stage NSCLC. The aim of this study was to verify the above study by examining the angioinvasion and mTOR expression profile in a cohort of early stage NSCLC patients and correlate the results to patient clinico-pathological data and survival. Methods: Angioinvasion was routinely recorded by the pathologist at the initial assessment of the tumor following resection. mTOR was evaluated in 141 early stage (IA-IIB) NSCLC patients (67 - squamous; 60 - adenocarcinoma; 14 - others) using immunohistochemistry (IHC) analysis with an immunohistochemical score (IHS) calculated (% positive cells × staining intensity). Intensity was scored as follows: 0 (negative); 1+ (weak); 2+ (moderate); 3+ (strong). The range of scores was 0-300. Based on the previous study a cut-off score of 30 was used to define positive versus negative patients. The impact of angioinvasion and mTOR expression on prognosis was then evaluated. Results: 101 of the 141 tumors studied expressed mTOR. There was no difference in mTOR expression between squamous cell carcinoma and adenocarcinoma. Angioinvasion (p= 0.024) and mTOR staining (p= 0.048) were significant univariate predictors of poor survival. Both remained significant after multivariate analysis (p= 0.037 and p= 0.020, respectively). Conclusions: Our findings verify angioinvasion and mTOR expression as new biomarkers for poor outcome in patients with early stage NSCLC. mTOR expressing patients may benefit from novel therapies targeting the mTOR survival pathway. © 2011 Elsevier Ireland Ltd.
Resumo:
The recent advances in the understanding of the pathogenesis of ovarian cancer have been helpful in addressing issues in diagnosis, prognosis and management. The study of ovarian tumours by novel techniques such as immunohistochemistry, fluorescent in situ hybridisation, comparative genomic hybridisation, polymerase chain reaction and new tumour markers have aided the evaluation and application of new concepts into clinical practice. The correlation of novel surrogate tumour specific features with response to treatment and outcome in patients has defined prognostic factors which may allow the future design of tailored therapy based on a molecular profile of the tumour. These have also been used to design new approaches to therapy such as antibody targeting and gene therapy. The delineation of roles of c-erbB2, c-fms and other novel receptor kinases in the pathogenesis of ovarian cancer has led initially to the development of anti-c-erbB2 monoclonal antibody therapy. The discovery of BRCA1 and BRCA2 genes will have an impact in the diagnosis and the prevention of familial ovarian cancer. The important role played by recessive genes such as p53 in cancer has raised the possibility of restoration of gene function by gene therapy. Although the pathological diagnosis of ovarian cancer is still confirmed principally on morphological features, addition of newer investigations will increasingly be useful in addressing difficult diagnostic problems. The increasingly rapid pace of discovery of genes important in disease, makes it imperative that the evaluation of their contribution in the pathogenesis of ovarian cancer is undertaken swiftly, thus improving the overall management of patients and their outcome.
Resumo:
It has been reported that genes regulating apoptosis may play a role in tumoral angiogenesis. This study examined the relationship between tumour vascularization, a measure of tumour angiogenesis, and bcl-2 and p53 expression in operable non-small-cell lung cancer (NSCLC). The relationship between bcl-2, p53 and tumour vascularization and epidermal-growth-factor- receptor(EGFR) and c-erbB-2 expression was also studied. Tissue sections from resected tumour specimens of 107 NSCLC patients were evaluated immunohistochemically for vascular grade and bcl-2, p53, EGFR and c-erbB-2 expression. bcl-2 expression was found in 20/107 (19%) cases and was associated with squamous-cell histology (p = 0.03). A strong inverse relationship was found between bcl-2 expression and vascular grade (p = 0.005). All c-erbB-2-positive cases were negative for bcl-2 expression (p = 0.01). Overall no association was found between c-erbB-2 expression and vascular grade. However, in bcl-2-negative cases positive c-erbB-2 expression correlated with low angiogenesis (p = 0.05). No relationship was found between p53 and EGFR expression and bcl-2, c-erbB-2 or vascular grade. The improved prognosis reported in bcl-2-positive NSCLC may be related to low tumour vascularization. The results suggest that the anti-apoptotic gene bcl- 2 plays a role in regulating tumour angiogenesis. Since normal lung epithelium expresses bcl-2, a sequence of tumour progression involving loss of bcl-2, then activation of c-erbB-2 or increase in tumour vascularization is proposed.
Resumo:
The epidermal growth factor receptor (EGFR) is part of a family of plasma membrane receptor tyrosine kinases that control many important cellular functions, from growth and proliferation to cell death. Cyclooxygenase (COX)-2 is an enzyme which catalyses the conversion of arachidonic acid to prostagladins and thromboxane. It is induced by various inflammatory stimuli, including the pro-inflammatory cytokines, Interleukin (IL)-1β, Tumour Necrosis Factor (TNF)-α and IL-2. Both EGFR and COX-2 are over-expressed in non-small cell lung cancer (NSCLC) and have been implicated in the early stages of tumourigenesis. This paper considers their roles in the development and progression of lung cancer, their potential interactions, and reviews the recent progress in cancer therapies that are directed toward these targets. An increasing body of evidence suggests that selective inhibitors of both EGFR and COX-2 are potential therapeutic agents for the treatment of NSCLC, in the adjuvant, metastatic and chemopreventative settings. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Akt, a Serine/Threonine protein kinase, mediates growth factor-associated cell survival. Constitutive activation of Akt (phosphorylated Akt, P-Akt) has been observed in several human cancers, including lung cancer and may be associated with poor prognosis and chemotherapy and radiotherapy resistance. The clinical relevance of P-Akt in non-small cell lung cancer (NSCLC) is not well described. In the present study, we examined 82 surgically resected snap-frozen and paraffin-embedded stage I to IIIA NSCLC samples for P-Akt and Akt by Western blotting and for P-Akt by immunohistochemistry. P-Akt protein levels above the median, measured using reproducible semiquantitative band densitometry, correlated with a favorable outcome (P = 0.007). Multivariate analysis identified P-Akt as a significant independent favorable prognostic factor (P = 0.004). Although associated with a favorable prognosis, high P-Akt levels correlated with high tumor grade (P = 0.02). Adenocarcinomas were associated with low P-Akt levels (P = 0.039). Akt was not associated with either outcome or clinicopathologic variables. Cytoplasmic (CP-Akt) and nuclear (NP-Akt) P-Akt tumor cell staining was detected in 96% and 42% of cases, respectively. Both CP-Akt and NP-Akt correlated with well-differentiated tumors (P = 0.008 and 0.017, respectively). NP-Akt also correlated with nodal metastases (P = 0.022) and squamous histology (P = 0.037). These results suggest P-Akt expression is a favorable prognostic factor in NSCLC. Immunolocalization of P-Akt, however, may be relevant as NP-Akt was associated with nodal metastases, a known poor prognostic feature in this disease. P-Akt may be a potential novel therapeutic target for the management of NSCLC. © 2005 American Association for Cancer Research.
Resumo:
Purpose Cancer cells have been shown to be more susceptible to Ran knockdown than normal cells. We now investigate whether Ran is a potential therapeutic target of cancers with frequently found mutations that lead to higher Ras/MEK/ERK [mitogen-activated protein/extracellular signal-regulated kinase (ERK; MEK)] and phosphoinositide 3-kinase (PI3K)/Akt/mTORC1 activities. Experimental Design Apoptosis was measured by flow cytometry [propidium iodide (PI) and Annexin V staining] and MTT assay in cancer cells grown under different conditions after knockdown of Ran. The correlations between Ran expression and patient survival were examined in breast and lung cancers. Results Cancer cells with their PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways inhibited are less susceptible to Ran silencing-induced apoptosis. K-Ras-mutated, c-Met-amplified, and Pten-deleted cancer cells are also more susceptible to Ran silencing-induced apoptosis than their wild-type counterparts and this effect is reduced by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Overexpression of Ran in clinical specimens is significantly associated with poor patient outcome in both breast and lung cancers. This association is dramatically enhanced in cancers with increased c-Met or osteopontin expression, or with oncogenic mutations of K-Ras or PIK3CA, all of which are mutations that potentially correlate with activation of the PI3K/Akt/mTORC1 and/or Ras/MEK/ERK pathways. Silencing Ran also results in dysregulation of nucleocytoplasmic transport of transcription factors and downregulation of Mcl-1 expression, at the transcriptional level, which are reversed by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Conclusion Ran is a potential therapeutic target for treatment of cancers with mutations/changes of expression in protooncogenes that lead to activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. ©2011 AACR.
Resumo:
Cancer-associated proteases promote peritoneal dissemination and chemoresistance in malignant progression. In this study, kallikrein-related peptidases 4, 5, 6, and 7 (KLK4-7)-cotransfected OV-MZ-6 ovarian cancer cells were embedded in a bioengineered three-dimensional (3D) microenvironment that contains RGD motifs for integrin engagement to analyze their spheroid growth and survival after chemotreatment. KLK4-7-cotransfected cells formed larger spheroids and proliferated more than controls in 3D, particularly within RGD-functionalized matrices, which was reduced upon integrin inhibition. In contrast, KLK4-7-expressing cell monolayers proliferated less than controls, emphasizing the relevance of the 3D microenvironment and integrin engagement. In a spheroid-based animal model, KLK4-7-overexpression induced tumor growth after 4 weeks and intraperitoneal spread after 8 weeks. Upon paclitaxel administration, KLK4-7-expressing tumors declined in size by 91% (controls: 87%) and showed 90% less metastatic outgrowth (controls: 33%, P<0.001). KLK4-7-expressing spheroids showed 53% survival upon paclitaxel treatment (controls: 51%), accompanied by enhanced chemoresistance-related factors, and their survival was further reduced by combination treatment of paclitaxel with KLK4/5/7 (22%, P=0.007) or MAPK (6%, P=0.006) inhibition. The concomitant presence of KLK4-7 in ovarian cancer cells together with integrin activation drives spheroid formation and proliferation. Combinatorial approaches of paclitaxel and KLK/MAPK inhibition may be more efficient for late-stage disease than chemotherapeutics alone as these inhibitory regimens reduced cancer spheroid growth to a greater extent than paclitaxel alone.
Resumo:
Although at present, there is a high incidence of prostate cancer, particularly in the Western world, mortality from this disease is declining and occurs primarily only from clinically significant late stage tumors with a poor prognosis. A major current focus of this field is the identification of new biomarkers which can detect earlier, and more effectively, clinically significant tumors from those deemed “low risk”, as well as predict the prognostic course of a particular cancer. This strategy can in turn offer novel avenues for targeted therapies. The large family of Receptor Tyrosine Kinases, the Ephs, and their binding partners, the ephrins, has been implicated in many cancers of epithelial origin through stimulation of oncogenic transformation, tumor angiogenesis, and promotion of increased cell survival, invasion and migration. They also show promise as both biomarkers of diagnostic and prognostic value and as targeted therapies in cancer. This review will briefly discuss the complex roles and biological mechanisms of action of these receptors and ligands and, with regard to prostate cancer, highlight their potential as biomarkers for both diagnosis and prognosis, their application as imaging agents, and current approaches to assessing them as therapeutic targets. This review demonstrates the need for future studies into those particular family members that will prove helpful in understanding the biology and potential as targets for treatment of prostate cancer.
Resumo:
Background Chlamydia trachomatis infection results in reproductive damage in some women. The process and factors involved in this immunopathology are not well understood. This study aimed to investigate the role of primary human cellular responses to chlamydial stress response proteases and chlamydial infection to further identify the immune processes involved in serious disease sequelae. Results Laboratory cell cultures and primary human reproductive epithelial cultures produced IL-6 in response to chlamydial stress response proteases (CtHtrA and CtTsp), UV inactivated Chlamydia, and live Chlamydia. The magnitude of the IL-6 response varied considerably (up to 1000 pg ml-1) across different primary human reproductive cultures. Thus different levels of IL-6 production by reproductive epithelia may be a determinant in disease outcome. Interestingly, co-culture models with either THP-1 cells or autologous primary human PBMC generally resulted in increased levels of IL-6, except in the case of live Chlamydia where the level of IL-6 was decreased compared to the epithelial cell culture only, suggesting this pathway may be able to be modulated by live Chlamydia. PBMC responses to the stress response proteases (CtTsp and CtHtrA) did not significantly vary for the different participant cohorts. Therefore, these proteases may possess conserved innate PAMPs. MAP kinases appeared to be involved in this IL-6 induction from human cells. Finally, we also demonstrated that IL-6 was induced by these proteins and Chlamydia from mouse primary reproductive cell cultures (BALB/C mice) and mouse laboratory cell models. Conclusions We have demonstrated that IL-6 may be a key factor for the chlamydial disease outcome in humans, given that primary human reproductive epithelial cell culture showed considerable variation in IL-6 response to Chlamydia or chlamydial proteins, and that the presence of live Chlamydia (but not UV killed) during co-culture resulted in a reduced IL-6 response suggesting this response may be moderated by the presence of the organism.
Resumo:
Integrin-linked kinase (ILK) and p38MAPK are protein kinases that transduce extracellular signals regulating cell migration and actin cytoskeletal organization. ILK-dependent regulation of p38MAPK is critical for mammalian kidney development and in smooth muscle cell migration, however, specific p38 isoforms has not been previously examined in ILK-regulated responses. Signaling by ILK and p38MAPK is often dysregulated in bladder cancer, and here we report a strong positive correlation between protein levels of ILK and p38β, which is the predominant isoform found in bladder cancer cells, as well as in patient-matched normal bladder and tumor samples. Knockdown by RNA interference of either p38β or ILK disrupts serum-induced, Rac1-dependent migration and actin cytoskeletal organization in bladder cancer cells. Surprisingly, ILK knockdown causes the selective reduction in p38β cellular protein level, without inhibiting p38β messenger RNA (mRNA) expression. The loss of p38β protein in ILK-depleted cells is partially rescued by the 26S proteasomal inhibitor MG132. Using co-precipitation and bimolecular fluorescent complementation assays, we find that ILK selectively forms cytoplasmic complexes with p38β. In situ proximity ligation assays further demonstrate that serum-stimulated assembly of endogenous ILK–p38β complexes is sensitive to QLT-0267, a small molecule ILK kinase inhibitor. Finally, inhibition of ILK reduces the amplitude and period of serum-induced activation of heat shock protein 27 (Hsp27), a target of p38β implicated in actin cytoskeletal reorganization. Our work identifies Hsp27 as a novel target of ILK–p38β signaling complexes, playing a key role in bladder cancer cell migration.