206 resultados para Josef Oriol, Beato, 1650-1702
Resumo:
In this paper we present truncated differential analysis of reduced-round LBlock by computing the differential distribution of every nibble of the state. LLR statistical test is used as a tool to apply the distinguishing and key-recovery attacks. To build the distinguisher, all possible differences are traced through the cipher and the truncated differential probability distribution is determined for every output nibble. We concatenate additional rounds to the beginning and end of the truncated differential distribution to apply the key-recovery attack. By exploiting properties of the key schedule, we obtain a large overlap of key bits used in the beginning and final rounds. This allows us to significantly increase the differential probabilities and hence reduce the attack complexity. We validate the analysis by implementing the attack on LBlock reduced to 12 rounds. Finally, we apply single-key and related-key attacks on 18 and 21-round LBlock, respectively.
Resumo:
We show that the LASH-x hash function is vulnerable to attacks that trade time for memory, including collision attacks as fast as 2(4x/11) and preimage attacks as fast as 2(4x/7). Moreover, we briefly mention heuristic lattice based collision attacks that use small memory but require very long messages that are expected to find collisions much faster than 2 x/2. All of these attacks exploit the designers’ choice of an all zero IV. We then consider whether LASH can be patched simply by changing the IV. In this case, we show that LASH is vulnerable to a 2(7x/8) preimage attack. We also show that LASH is trivially not a PRF when any subset of input bytes is used as a secret key. None of our attacks depend upon the particular contents of the LASH matrix – we only assume that the distribution of elements is more or less uniform.
Resumo:
It is increasingly apparent that sea-level data (e.g. microfossil transfer functions, dated coral microatolls and direct observations from satellite and tidal gauges) vary temporally and spatially at regional to local scales, thus limiting our ability to model future sea-level rise for many regions. Understanding sealevel response at ‘far-field’ locations at regional scales is fundamental for formulating more relevant sea-level rise susceptibility models within these regions under future global change projections. Fossil corals and reefs in particular are valuable tools for reconstructing past sea levels and possible environmental phase shifts beyond the temporal constraints of instrumental records. This study used abundant surface geochronological data based on in situ subfossil corals and precise elevation surveys to determine previous sea level in Moreton Bay, eastern Australia, a far-field site. A total of 64 U-Th dates show that relative sea level was at least 1.1 m above modern lowest astronomical tide (LAT) from at least ˜6600 cal. yr BP. Furthermore, a rapid synchronous demise in coral reef growth occurred in Moreton Bay ˜5800 cal. yr BP, coinciding with reported reef hiatus periods in other areas around the Indo-Pacific region. Evaluating past reef growth patterns and phases allows for a better interpretation of anthropogenic forcing versus natural environmental/climatic cycles that effect reef formation and demise at all scales and may allow better prediction of reef response to future global change.
Resumo:
RC4(n, m) is a stream cipher based on RC4 and is designed by G. Gong et al. It can be seen as a generalization of the famous RC4 stream cipher designed by Ron Rivest. The authors of RC4(n, m) claim that the cipher resists all the attacks that are successful against the original RC4. The paper reveals cryptographic weaknesses of the RC4(n, m) stream cipher. We develop two attacks. The first one is based on non-randomness of internal state and allows to distinguish it from a truly random cipher by an algorithm that has access to 24·n bits of the keystream. The second attack exploits low diffusion of bits in the KSA and PRGA algorithms and recovers all bytes of the secret key. This attack works only if the initial value of the cipher can be manipulated. Apart from the secret key, the cipher uses two other inputs, namely, initial value and initial vector. Although these inputs are fixed in the cipher specification, some applications may allow the inputs to be under the attacker control. Assuming that the attacker can control the initial value, we show a distinguisher for the cipher and a secret key recovery attack that for the L-bit secret key, is able to recover it with about (L/n) · 2n steps. The attack has been implemented on a standard PC and can reconstruct the secret key of RC(8, 32) in less than a second.
Resumo:
At NDSS 2012, Yan et al. analyzed the security of several challenge-response type user authentication protocols against passive observers, and proposed a generic counting based statistical attack to recover the secret of some counting based protocols given a number of observed authentication sessions. Roughly speaking, the attack is based on the fact that secret (pass) objects appear in challenges with a different probability from non-secret (decoy) objects when the responses are taken into account. Although they mentioned that a protocol susceptible to this attack should minimize this difference, they did not give details as to how this can be achieved barring a few suggestions. In this paper, we attempt to fill this gap by generalizing the attack with a much more comprehensive theoretical analysis. Our treatment is more quantitative which enables us to describe a method to theoretically estimate a lower bound on the number of sessions a protocol can be safely used against the attack. Our results include 1) two proposed fixes to make counting protocols practically safe against the attack at the cost of usability, 2) the observation that the attack can be used on non-counting based protocols too as long as challenge generation is contrived, 3) and two main design principles for user authentication protocols which can be considered as extensions of the principles from Yan et al. This detailed theoretical treatment can be used as a guideline during the design of counting based protocols to determine their susceptibility to this attack. The Foxtail protocol, one of the protocols analyzed by Yan et al., is used as a representative to illustrate our theoretical and experimental results.
Resumo:
Rakaposhi is a synchronous stream cipher, which uses three main components: a non-linear feedback shift register (NLFSR), a dynamic linear feedback shift register (DLFSR) and a non-linear filtering function (NLF). NLFSR consists of 128 bits and is initialised by the secret key K. DLFSR holds 192 bits and is initialised by an initial vector (IV). NLF takes 8-bit inputs and returns a single output bit. The work identifies weaknesses and properties of the cipher. The main observation is that the initialisation procedure has the so-called sliding property. The property can be used to launch distinguishing and key recovery attacks. The distinguisher needs four observations of the related (K,IV) pairs. The key recovery algorithm allows to discover the secret key K after observing 29 pairs of (K,IV). Based on the proposed related-key attack, the number of related (K,IV) pairs is 2(128 + 192)/4 pairs. Further the cipher is studied when the registers enter short cycles. When NLFSR is set to all ones, then the cipher degenerates to a linear feedback shift register with a non-linear filter. Consequently, the initial state (and Secret Key and IV) can be recovered with complexity 263.87. If DLFSR is set to all zeros, then NLF reduces to a low non-linearity filter function. As the result, the cipher is insecure allowing the adversary to distinguish it from a random cipher after 217 observations of keystream bits. There is also the key recovery algorithm that allows to find the secret key with complexity 2 54.
Resumo:
Most previous work on unconditionally secure multiparty computation has focused on computing over a finite field (or ring). Multiparty computation over other algebraic structures has not received much attention, but is an interesting topic whose study may provide new and improved tools for certain applications. At CRYPTO 2007, Desmedt et al introduced a construction for a passive-secure multiparty multiplication protocol for black-box groups, reducing it to a certain graph coloring problem, leaving as an open problem to achieve security against active attacks. We present the first n-party protocol for unconditionally secure multiparty computation over a black-box group which is secure under an active attack model, tolerating any adversary structure Δ satisfying the Q 3 property (in which no union of three subsets from Δ covers the whole player set), which is known to be necessary for achieving security in the active setting. Our protocol uses Maurer’s Verifiable Secret Sharing (VSS) but preserves the essential simplicity of the graph-based approach of Desmedt et al, which avoids each shareholder having to rerun the full VSS protocol after each local computation. A corollary of our result is a new active-secure protocol for general multiparty computation of an arbitrary Boolean circuit.
Resumo:
NTRUEncrypt is a fast and practical lattice-based public-key encryption scheme, which has been standardized by IEEE, but until recently, its security analysis relied only on heuristic arguments. Recently, Stehlé and Steinfeld showed that a slight variant (that we call pNE) could be proven to be secure under chosen-plaintext attack (IND-CPA), assuming the hardness of worst-case problems in ideal lattices. We present a variant of pNE called NTRUCCA, that is IND-CCA2 secure in the standard model assuming the hardness of worst-case problems in ideal lattices, and only incurs a constant factor overhead in ciphertext and key length over the pNE scheme. To our knowledge, our result gives the first IND-CCA2 secure variant of NTRUEncrypt in the standard model, based on standard cryptographic assumptions. As an intermediate step, we present a construction for an All-But-One (ABO) lossy trapdoor function from pNE, which may be of independent interest. Our scheme uses the lossy trapdoor function framework of Peikert and Waters, which we generalize to the case of (k − 1)-of-k-correlated input distributions.
Resumo:
RC4-Based Hash Function is a new proposed hash function based on RC4 stream cipher for ultra low power devices. In this paper, we analyse the security of the function against collision attack. It is shown that the attacker can find collision and multi-collision messages with complexity only 6 compress function operations and negligible memory with time complexity 2 13. In addition, we show the hashing algorithm can be distinguishable from a truly random sequence with probability close to one.
Resumo:
In this paper we investigate the differential properties of block ciphers in hash function modes of operation. First we show the impact of differential trails for block ciphers on collision attacks for various hash function constructions based on block ciphers. Further, we prove the lower bound for finding a pair that follows some truncated differential in case of a random permutation. Then we present open-key differential distinguishers for some well known round-reduced block ciphers.
Resumo:
At Eurocrypt’04, Freedman, Nissim and Pinkas introduced a fuzzy private matching problem. The problem is defined as follows. Given two parties, each of them having a set of vectors where each vector has T integer components, the fuzzy private matching is to securely test if each vector of one set matches any vector of another set for at least t components where t < T. In the conclusion of their paper, they asked whether it was possible to design a fuzzy private matching protocol without incurring a communication complexity with the factor (T t ) . We answer their question in the affirmative by presenting a protocol based on homomorphic encryption, combined with the novel notion of a share-hiding error-correcting secret sharing scheme, which we show how to implement with efficient decoding using interleaved Reed-Solomon codes. This scheme may be of independent interest. Our protocol is provably secure against passive adversaries, and has better efficiency than previous protocols for certain parameter values.
Resumo:
The vision of a digital earth (DE) is continuously evolving, and the next-generation infrastructures, platforms and applications are being implemented. In this article, we attempt to initiate a debate within the DE and with affine communities about 'why' a digital earth curriculum (DEC) is needed, 'how' it should be developed, and 'what' it could look like. It is impossible to do justice to the Herculean effort of DEC development without extensive consultations with the broader community. We propose a frame for the debate (what, why, and how of a DEC) and a rationale for and elements of a curriculum for educating the coming generations of digital natives and indicate possible realizations. We particularly argue that a DEC is not a déjà vu of classical research and training agendas of geographic information science, remote sensing, and similar fields by emphasizing its unique characteristics.
Resumo:
This paper makes a formal security analysis of the current Australian e-passport implementation using model checking tools CASPER/CSP/FDR. We highlight security issues in the current implementation and identify new threats when an e-passport system is integrated with an automated processing system like SmartGate. The paper also provides a security analysis of the European Union (EU) proposal for Extended Access Control (EAC) that is intended to provide improved security in protecting biometric information of the e-passport bearer. The current e-passport specification fails to provide a list of adequate security goals that could be used for security evaluation. We fill this gap; we present a collection of security goals for evaluation of e-passport protocols. Our analysis confirms existing security weaknesses that were previously identified and shows that both the Australian e-passport implementation and the EU proposal fail to address many security and privacy aspects that are paramount in implementing a secure border control mechanism. ACM Classification C.2.2 (Communication/Networking and Information Technology – Network Protocols – Model Checking), D.2.4 (Software Engineering – Software/Program Verification – Formal Methods), D.4.6 (Operating Systems – Security and Privacy Protection – Authentication)
Resumo:
An accumulator based on bilinear pairings was proposed at CT-RSA'05. Here, it is first demonstrated that the security model proposed by Lan Nguyen does lead to a cryptographic accumulator that is not collision resistant. Secondly, it is shown that collision-resistance can be provided by updating the adversary model appropriately. Finally, an improvement on Nguyen's identity escrow scheme, with membership revocation based on the accumulator, by removing the trusted third party is proposed.
Resumo:
Recently, several classes of permutation polynomials of the form (x2 + x + δ)s + x over F2m have been discovered. They are related to Kloosterman sums. In this paper, the permutation behavior of polynomials of the form (xp − x + δ)s + L(x) over Fpm is investigated, where L(x) is a linearized polynomial with coefficients in Fp. Six classes of permutation polynomials on F2m are derived. Three classes of permutation polynomials over F3m are also presented.