255 resultados para Joint Pain
Resumo:
As part of an ongoing research on the development of a longer life insulated rail joint (IRJ), this paper reports a field experiment and a simplified 2D numerical modelling for the purpose of investigating the behaviour of rail web in the vicinity of endpost in an insulated rail joint (IRJ) due to wheel passages. A simplified 2D plane stress finite element model is used to simulate the wheel-rail rolling contact impact at IRJ. This model is validated using data from a strain gauged IRJ that was installed in a heavy haul network; data in terms of the vertical and shear strains at specific positions of the IRJ during train passing were captured and compared with the results of the FE model. The comparison indicates a satisfactory agreement between the FE model and the field testing. Furthermore, it demonstrates that the experimental and numerical analyses reported in this paper provide a valuable datum for developing further insight into the behaviour of IRJ under wheel impacts.
Resumo:
Obese children move less and with greater difficulty than normal-weight counterparts but expend comparable energy. Increased metabolic costs have been attributed to poor biomechanics but few studies have investigated the influence of obesity on mechanical demands of gait. This study sought to assess three-dimensional lower extremity joint powers in two walking cadences in 28 obese and normal-weight children. 3D-motion analysis was conducted for five trials of barefoot walking at self-selected and 30% greater than self-selected cadences. Mechanical power was calculated at the hip, knee, and ankle in sagittal, frontal and transverse planes. Significant group differences were seen for all power phases in the sagittal plane, hip and knee power at weight acceptance and hip power at propulsion in the frontal plane, and knee power during mid-stance in the transverse plane. After adjusting for body weight, group differences existed in hip and knee power phases at weight acceptance in sagittal and frontal planes, respectively. Differences in cadence existed for all hip joint powers in the sagittal plane and frontal plane hip power at propulsion. Frontal plane knee power at weight acceptance and sagittal plane knee power at propulsion were significantly different between cadences. Larger joint powers in obese children contribute to difficulty performing locomotor tasks, potentially decreasing motivation to exercise.
Resumo:
Inspection of solder joints has been a critical process in the electronic manufacturing industry to reduce manufacturing cost, improve yield, and ensure product quality and reliability. The solder joint inspection problem is more challenging than many other visual inspections because of the variability in the appearance of solder joints. Although many research works and various techniques have been developed to classify defect in solder joints, these methods have complex systems of illumination for image acquisition and complicated classification algorithms. An important stage of the analysis is to select the right method for the classification. Better inspection technologies are needed to fill the gap between available inspection capabilities and industry systems. This dissertation aims to provide a solution that can overcome some of the limitations of current inspection techniques. This research proposes two inspection steps for automatic solder joint classification system. The “front-end” inspection system includes illumination normalisation, localization and segmentation. The illumination normalisation approach can effectively and efficiently eliminate the effect of uneven illumination while keeping the properties of the processed image. The “back-end” inspection involves the classification of solder joints by using Log Gabor filter and classifier fusion. Five different levels of solder quality with respect to the amount of solder paste have been defined. Log Gabor filter has been demonstrated to achieve high recognition rates and is resistant to misalignment. Further testing demonstrates the advantage of Log Gabor filter over both Discrete Wavelet Transform and Discrete Cosine Transform. Classifier score fusion is analysed for improving recognition rate. Experimental results demonstrate that the proposed system improves performance and robustness in terms of classification rates. This proposed system does not need any special illumination system, and the images are acquired by an ordinary digital camera. In fact, the choice of suitable features allows one to overcome the problem given by the use of non complex illumination systems. The new system proposed in this research can be incorporated in the development of an automated non-contact, non-destructive and low cost solder joint quality inspection system.
Resumo:
The joints of a humanoid robot experience disturbances of markedly different magnitudes during the course of a walking gait. Consequently, simple feedback control techniques poorly track desired joint trajectories. This paper explores the addition of a control system inspired by the architecture of the cerebellum to improve system response. This system learns to compensate the changes in load that occur during a cycle of motion. The joint compensation scheme, called Trajectory Error Learning, augments the existing feedback control loop on a humanoid robot. The results from tests on the GuRoo platform show an improvement in system response for the system when augmented with the cerebellar compensator.
Resumo:
BACKGROUND: The standard treatment for a non-union of the hallux metatarsophalangeal joint fusion has been to revise the fusion. Revision fusion is technically more demanding, often involving bone grafting, more substantial fixation and prolonged period of immobilization postoperatively. We present data to suggest that removal of hardware and debridement alone is an alternative treatment option. ---------- MATERIALS AND METHODS: A case note review identified patients with a symptomatic non-union after hallux metatarsophalangeal joint (MTPJ) fusion. It is our practice to offer these patients revision fusion or removal of hardware and debridement. For the seven patients that chose hardware removal and were left with a pseudarthrosis, a matched control group was selected from patients who had had successful fusions. Three outcome scores were used. Hallux valgus and dorsiflexion angles were recorded.---------- RESULTS: One hundred thirty-nine hallux MTPJ arthrodeses were carried out. Fourteen non-unions were identified. The rate of non-union in males and following previous hallux MTPJ surgery was 19% and 24%, respectively. In females undergoing a primary MTPJ fusion, the rate was 2.4%. Twelve non-union patients were reviewed at 27 months (mean). Eleven patients had elected to undergo removal of hardware and debridement. Four patients with pseudarthrosis were unhappy with the results and proceeded to either revision fusion or MTPJ replacement. Seven non-union patients, who had removal of hardware alone, had outcome scores marginally worse compared to those with successful fusions.---------- CONCLUSION: Removal of hardware alone is a reasonable option to offer as a relatively minor procedure following a failed arthrodesis of the first MTPJ. This must be accepted on the proviso that in this study four out of 11 (36%) patients proceeded to a revision first MTPJ fusion or first MTPJ replacement. We also found that the rate of non-union in primary first MTPJ fusion was significantly higher in males and those patients who had undergone previous surgery.
Resumo:
People suffering from pain due to osteoarthritic or rheumatoidal changes in the joints are still waiting for a better treatment. Although some studies have achieved success in repairing small cartilage defects, there is no widely accepted method for complete repair of osteochondral defects. Also joint replacements have not yet succeeded in replacing of natural cartilage without complications. Therefore, there is room for a new medical approach, which outperforms currently used methods. The aim of this study is to show potential of using a tissue engineering approach for regeneration of osteochondral defects. The critical review of currently used methods for treatment of osteochondral defects is also provided. In this study, two kinds of hybrid scaffolds developed in Hutmacher's group have been analysed. The first biphasic scaffold consists of fibrin and PCL. The fibrin serves as a cartilage phase while the porous PCL scaffold acts as the subchondral phase. The second system comprises of PCL and PCL-TCP. The scaffolds were fabricated via fused deposition modeling which is a rapid prototyping system. Bone marrow-derived mesenchymal cells were isolated from New Zealand White rabbits, cultured in vitro and seeded into the scaffolds. Bone regenerations of the subchondral phases were quantified via micro CT analysis and the results demonstrated the potential of the porous PCL and PCL-TCP scaffolds in promoting bone healing. Fibrin was found to be lacking in this aspect as it degrades rapidly. On the other hand, the porous PCL scaffold degrades slowly hence it provides an effective mechanical support. This study shows that in the field of cartilage repair or replacement, tissue engineering may have big impact in the future. In vivo bone and cartilage engineering via combining a novel composite, biphasic scaffold technology with a MSC has been shown a high potential in the knee defect regeneration in the animal models. However, the clinical application of tissue engineering requires the future research work due to several problems, such as scaffold design, cellular delivery and implantation strategies.
Resumo:
Background: Inflammation and pain coexist in conditions such as arthritis, inflammatory bowel disease, and lower back pain. The drugs currently used to treat the combination of inflammation and pain all have disadvantages. Thus, new drugs and new approaches are needed to treat inflammation with pain. The resolvins are considered to be part of the natural resolving mechanism for inflammation, and have been shown to prevent inflammation in animal models. Objectives/methods: To evaluate a paper suggesting that the resolvins RvE1 and RvD1 attenuate inflammatory pain in animal models. Results: RvE1 has been shown to attenuate inflammation and, to a lesser extent, pain in animal models. Limited results are presented of the effectiveness of RvD1 against inflammatory pain. Conclusion: Drugs that mimic or potentiate the effects of the resolvins may be useful for the treatment of some inflammation with pain.
Resumo:
In this short communication we wanted to find out what is the analgesic effect of single dose oral oxycodone, with or without the addition of paracetamol, for adults with postoperative pain? Oxycodone at doses of 5mg and above is an effective analgesia for patients with moderate to severe postoperative pain. The efficacy of oxycodone is increased with the addition of paracetamol. The use of oxycodone 10mg plus paracetamol 625mg can be considered for use in the pain relief protocol in post-operative settings. Clinicians should consider a range of factors before prescribing or administering oxycodone for acute post-operative pain, including but not limited to, individual patient clinical profile, adverse effects, cost and patient preference.
Resumo:
One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.
Resumo:
BACKGROUND: Indigenous patients with acute coronary syndromes represent a high-risk group. There are however few contemporary datasets addressing differences in the presentation and management of Indigenous and non-Indigenous patients with chest pain. METHODS: The Heart Protection Project, is a multicentre retrospective audit of consecutive medical records from patients presenting with chest pain. Patients were identified as Indigenous or non-Indigenous, and time to presentation and cardiac investigations as well as rates of cardiac investigations and procedures were compared between the two groups. RESULTS: Of the 2380 patients included, 199 (8.4%) identified as Indigenous, and 2174 (91.6%) as non-Indigenous. Indigenous patients were younger, had higher rates hyperlipidaemia, diabetes, smoking, known coronary artery disease and a lower rate of prior PCI; and were significantly less likely to have private health insurance, be admitted to an interventional facility or to have a cardiologist as primary physician. Following adjustment for difference in baseline characteristics, Indigenous patients had comparable rates of cardiac investigations and delay times to presentation and investigations. CONCLUSIONS: Although the Indigenous population was identified as a high-risk group, in this analysis of selected Australian hospitals there were no significant differences in treatment or management of Indigenous patients in comparison to non-Indigenous.
Resumo:
A finite element numerical simulation is carried out to examine stress distributions on railhead in the cicinity of the endpost of an insulated rail joint. The contact patch and pressure distribution are considered using modified Hertzian simulation. A combined elasto-plastic material modelling available in Abaqus is employed in the simulation. A dynamic load factor of 1.21 is considered in modelling for the wheel load based on a previous study as part of this on going research. Shakedown theorem is employed in this study. A peak pressure load which is above the shakedown limit is determined as input load. As a result, a progressive damage in the railhead has been captured as depicted in the equivalent plastic strain plot.
Resumo:
In a clinical setting, pain is reported either through patient self-report or via an observer. Such measures are problematic as they are: 1) subjective, and 2) give no specific timing information. Coding pain as a series of facial action units (AUs) can avoid these issues as it can be used to gain an objective measure of pain on a frame-by-frame basis. Using video data from patients with shoulder injuries, in this paper, we describe an active appearance model (AAM)-based system that can automatically detect the frames in video in which a patient is in pain. This pain data set highlights the many challenges associated with spontaneous emotion detection, particularly that of expression and head movement due to the patient's reaction to pain. In this paper, we show that the AAM can deal with these movements and can achieve significant improvements in both the AU and pain detection performance compared to the current-state-of-the-art approaches which utilize similarity-normalized appearance features only.