115 resultados para Ionizing radiation.
Resumo:
Characteristics of modal sound radiation of finite cylindrical shells are studied using finite element and boundary element methods in this paper. In the low frequency range, modal radiation efficiencies of finite cylindrical shells are found to asymptotically approach those of the corresponding infinite cylindrical shell when structural trace wavelengths of the cylindrical shells are greater than the acoustic wavelength. Modal radiation efficiencies for each group of modes having the same circumferential modal index decrease as the axial modal index increases. They converge to each other when the axial trace wavelength is much greater than the circumferential trace wavelength. The mechanism leading to lower radiation efficiency of modes with higher circumferential modal index of short cylinders is explained. Similar to those of flat plate panels, change in slope or waviness is observed in modal radiation efficiency curves of modes with higher order axial modal index at medium frequencies. This is attributed to the interference of sound radiated by neighbouring vibrating cells when the distance between nodal lines of a vibrating mode is in the same order or smaller than the acoustic wavelength. Effects of the internal sound field on modal radiation efficiencies of a finite open-end cylinder are discussed.
Resumo:
In recent years, a number of phylogenetic methods have been developed for estimating molecular rates and divergence dates under models that relax the molecular clock constraint by allowing rate change throughout the tree. These methods are being used with increasing frequency, but there have been few studies into their accuracy. We tested the accuracy of several relaxed-clock methods (penalized likelihood and Bayesian inference using various models of rate change) using nucleotide sequences simulated on a nine-taxon tree. When the sequences evolved with a constant rate, the methods were able to infer rates accurately, but estimates were more precise when a molecular clock was assumed. When the sequences evolved under a model of autocorrelated rate change, rates were accurately estimated using penalized likelihood and by Bayesian inference using lognormal and exponential models of rate change, while other models did not perform as well. When the sequences evolved under a model of uncorrelated rate change, only Bayesian inference using an exponential rate model performed well. Collectively, the results provide a strong recommendation for using the exponential model of rate change if a conservative approach to divergence time estimation is required. A case study is presented in which we use a simulation-based approach to examine the hypothesis of elevated rates in the Cambrian period, and it is found that these high rate estimates might be an artifact of the rate estimation method. If this bias is present, then the ages of metazoan divergences would be systematically underestimated. The results of this study have implications for studies of molecular rates and divergence dates.
Resumo:
Background: Potyviruses are found world wide, are spread by probing aphids and cause considerable crop damage. Potyvirus is one of the two largest plant virus genera and contains about 15% of all named plant virus species. When and why did the potyviruses become so numerous? Here we answer the first question and discuss the other. Methods and Findings: We have inferred the phylogenies of the partial coat protein gene sequences of about 50 potyviruses, and studied in detail the phylogenies of some using various methods and evolutionary models. Their phylogenies have been calibrated using historical isolation and outbreak events: the plum pox virus epidemic which swept through Europe in the 20th century, incursions of potyviruses into Australia after agriculture was established by European colonists, the likely transport of cowpea aphid-borne mosaic virus in cowpea seed from Africa to the Americas with the 16th century slave trade and the similar transport of papaya ringspot virus from India to the Americas. Conclusions/Significance: Our studies indicate that the partial coat protein genes of potyviruses have an evolutionary rate of about 1.1561024 nucleotide substitutions/site/year, and the initial radiation of the potyviruses occurred only about 6,600 years ago, and hence coincided with the dawn of agriculture. We discuss the ways in which agriculture may have triggered the prehistoric emergence of potyviruses and fostered their speciation.
A tan in a test tube -in vitro models for investigating ultraviolet radiation-induced damage in skin
Resumo:
Presently, global rates of skin cancers induced by ultraviolet radiation (UVR) exposure are on the rise. In view of this, current knowledge gaps in the biology of photocarcinogenesis and skin cancer progression urgently need to be addressed. One factor that has limited skin cancer research has been the need for a reproducible and physiologically-relevant model able to represent the complexity of human skin. This review outlines the main currently-used in vitro models of UVR-induced skin damage. This includes the use of conventional two-dimensional cell culture techniques and the major animal models that have been employed in photobiology and photocarcinogenesis research. Additionally, the progression towards the use of cultured skin explants and tissue-engineered skin constructs, and their utility as models of native skin's responses to UVR are described. The inherent advantages and disadvantages of these in vitro systems are also discussed.
Resumo:
Purpose: To provide an overview and a critical appraisal of systematic reviews (SRs) of published interventions for the prevention/management of radiation dermatitis. Methods and Materials: We searched Medline, CINAHL, Embase, and the Cochrane Library. We also manually searched through individual reference lists of potentially eligible articles and a number of key journals in the topic area. Two authors screened all potential articles and included eligible SRs. Two authors critically appraised and extracted key findings from the included reviews using AMSTAR (the measurement tool for “assessment of multiple systematic reviews”). Results: Of 1837 potential titles, 6 SRs were included. A number of interventions have been reported to be potentially beneficial for managing radiation dermatitis. Interventions evaluated in these reviews included skin care advice, steroidal/nonsteroidal topical agents, systemic therapies, modes of radiation delivery, and dressings. However, all the included SRs reported that there is insufficient evidence supporting any single effective intervention. The methodological quality of the included studies varied, and methodological shortfalls in these reviews might create biases to the overall results or recommendations for clinical practice. Conclusions: An up-to-date high-quality SR in the prevention/management of radiation dermatitis is needed to guide practice and direction for future research. We recommend that clinicians or guideline developers critically evaluate the information of SRs in their decision making.
Resumo:
Background: Radiation-induced skin reaction (RISR) is one of the most common and distressing side effects of radiotherapy in patients with cancer. It is featured with swelling, redness, itching, pain, breaks in skin, discomfort, and a burning sensation. There is a lack of convincing evidence supporting any single practice in the prevention or management of RISR. Methods/Designs: This double-blinded randomised controlled trial aims to investigate the effects of a natural oil-based emulsion containing allantoin (as known as Moogoo Udder Cream®) versus aqueous cream in reducing RISR, improving pain, itching and quality of life in this patient group. One group will receive Moogoo Udder Cream®. Another group will receive aqueous cream. Outcome measures will be collected using patient self-administered questionnaire, interviewer administered questionnaire and clinician assessment at commencement of radiotherapy, weekly during radiotherapy, and four weeks after the completion of radiotherapy. Discussion: Despite advances of radiologic advances and supportive care, RISR are still not well managed. There is a lack of efficacious interventions in managing RISR. While anecdotal evidence suggests that Moogoo Udder Cream® may be effective in managing RISR, research is needed to substantiate this claim. This paper presents the design of a double blind randomised controlled trial that will evaluate the effects of Moogoo Udder Cream® versus aqueous cream for managing in RISR in patients with cancer. Trial registration: ACTRN 12612000568819
Resumo:
Folate is essential for human health in the prevention of megaloblastic anaemia and neural tube birth defects as well as roles in cardiovascular disease and cancer. Therefore research into environmental factors that may impact folate status, such as solar ultraviolet radiation, is of great health significance. In vitro studies have shown that ultraviolet (UV) radiation can degrade folate and folic acid in human blood and this has been confirmed in several human studies. Despite these findings, there is a dearth of epidemiological research into investigating the relationship between folate status and the links to solar UV exposure.
Resumo:
Objective: Radiation safety principles dictate that imaging procedures should minimise the radiation risks involved, without compromising diagnostic performance. This study aims to define a core set of views that maximises clinical information yield for minimum radiation risk. Angiographers would supplement these views as clinically indicated. Methods: An algorithm was developed to combine published data detailing the quality of information derived for the major coronary artery segments through the use of a common set of views in angiography with data relating to the dose–area product and scatter radiation associated with these views. Results: The optimum view set for the left coronary system comprised four views: left anterior oblique (LAO) with cranial (Cr) tilt, shallow right anterior oblique (AP-RAO) with caudal (Ca) tilt, RAO with Ca tilt and AP-RAO with Cr tilt. For the right coronary system three views were identified: LAO with Cr tilt, RAO and AP-RAO with Cr tilt. An alternative left coronary view set including a left lateral achieved minimally superior efficiency (,5%), but with an ,8% higher radiation dose to the patient and 40% higher cardiologist dose. Conclusion: This algorithm identifies a core set of angiographic views that optimises the information yield and minimises radiation risk. This basic data set would be supplemented by additional clinically determined views selected by the angiographer for each case. The decision to use additional views for diagnostic angiography and interventions would be assisted by referencing a table of relative radiation doses for the views being considered.
Resumo:
Purpose: To determine whether uniform guidelines and training in the stabilization and formation of thermoplastic shells can improve the reproducibility of set-up for Head and Neck cancer patients. Methods and materials: Image based measurements of the planning and treatment positions for 35 head and neck cancer patients undergoing radical radiotherapy were analysed to provide a baseline of the reproducibility of thermoplastic immobilization. Radiation therapists (RT) were surveyed to establish a perception of their confidence in thermoplastic procedures. An evidence based staff training program was created and implemented. Set-up reproduction and staff perception were reviewed to measure the impact of the training program. Results: The mean (SD) 3D vectors of anatomical displacement, measured on the patient images, improved from 4.64 (2.03) for the baseline group compared to 3.02 (1.65) following training (p < 0.01). The proportion of 3D displacements of patient data exceeding 5 mm 3D vector was decreased from 37.1% to 5.7% (p < 0.001) and the 3 mm vector from 85.7% to 42.9% (p < 0.001). The post-training survey scores demonstrated improved confidence in reproducibility of set-up for head and neck patients. Conclusion: The Thermoplastic Shells Training Program has been found to improve the treatment reproducibility for head and neck radiation therapy patients. Uniform guidelines have increased RT confidence in thermoplastic procedures.
Resumo:
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.
Resumo:
OBJECTIVES: Ecological studies have suggested an inverse relationship between latitude and risks of some cancers. However, associations between solar ultraviolet radiation (UVR) exposure and esophageal cancer risk have not been fully explored. We therefore investigated the association between nevi, freckles, and measures of ambient UVR over the life-course with risks of esophageal cancers. METHODS: We compared estimated lifetime residential ambient UVR among Australian patients with esophageal cancer (330 esophageal adenocarcinoma (EAC), 386 esophago-gastric junction adenocarcinoma (EGJAC), and 279 esophageal squamous cell carcinoma (ESCC)), and 1471 population controls. We asked people where they had lived at different periods of their life, and assigned ambient UVR to each location based on measurements from NASA's Total Ozone Mapping Spectrometer database. Freckling and nevus burden were self-reported. We used multivariable logistic regression models to estimate the magnitude of associations between phenotype, ambient UVR, and esophageal cancer risk. RESULTS: Compared with population controls, patients with EAC and EGJAC were less likely to have high levels of estimated cumulative lifetime ambient UVR (EAC odds ratio (OR) 0.59, 95% confidence interval (CI) 0.35-0.99, EGJAC OR 0.55, 0.34-0.90). We found no association between UVR and risk of ESCC (OR 0.91, 0.51-1.64). The associations were independent of age, sex, body mass index, education, state of recruitment, frequency of reflux, smoking status, alcohol consumption, and H. pylori serostatus. Cases with EAC were also significantly less likely to report high levels of nevi than controls. CONCLUSIONS: These data show an inverse association between ambient solar UVR at residential locations and risk of EAC and EGJAC, but not ESCC.
Resumo:
The problem of MHD natural convection boundary layer flow of an electrically conducting and optically dense gray viscous fluid along a heated vertical plate is analyzed in the presence of strong cross magnetic field with radiative heat transfer. In the analysis radiative heat flux is considered by adopting optically thick radiation limit. Attempt is made to obtain the solutions valid for liquid metals by taking Pr≪1. Boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation (SFF) and primitive variable formulation (PVF). Non-similar equations obtained from SFF are then simulated by implicit finite difference (Keller-box) method whereas parabolic partial differential equations obtained from PVF are integrated numerically by hiring direct finite difference method over the entire range of local Hartmann parameter, $xi$ . Further, asymptotic solutions are also obtained for large and small values of local Hartmann parameter $xi$ . A favorable agreement is found between the results for small, large and all values of $xi$ . Numerical results are also demonstrated graphically by showing the effect of various physical parameters on shear stress, rate of heat transfer, velocity and temperature.
Resumo:
In this study, natural convection boundary layer flow of thermally radiating fluid along a heated vertical wavy surface is analyzed. Here, the radiative component of heat flux emulates the surface temperature. Governing equations are reduced to dimensionless form, subject to the appropriate transformation. Resulting dimensionless equations are transformed to a set of parabolic partial differential equations by using primitive variable formulation, which are then integrated numerically via iterative finite difference scheme. Emphasis has been given to low Prandtl number fluid. The numerical results obtained for the physical parameters, such as, surface radiation parameter, R, and radiative length parameter, ξ, are discussed in terms of local skin friction and Nusselt number coefficients. Comprehensive interpretation of velocity distribution is also given in the form of streamlines.