304 resultados para Invasive Species
Resumo:
Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.
Resumo:
Exotic grasses have been introduced in countries worldwide for pasture improvement, soil stabilisation and ornamental purposes. Some of these introductions have proven successful, but many have not (Cook & Dias 2006). In Australia, the Commonwealth Plant Introduction Scheme was initiated in 1929, and over-time introduced more than 5000 species of grasses, legumes and other forage and browse plants (Cook & Dias 2006). Lonsdale (1994) suggested that, in tropical Australia, 13% of introductions have become a problem, with only 5% being considered useful for agriculture. Low (1997) suggested that 5 out of 18 of Australia's worst tropical environmental weeds were intentionally introduced as pasture grasses. The spread and dominance of invasive grass species that degrade the quality of pastures for production can impact significantly on the livelihoods of small proprietors. Although Livestock grazing contributes only a small percentage to the world's GDP (1.5%), maintaining the long-term stability of this industry is crucial because of the high social and environmental consequence of a collapse. One billion of the world's poor are dependent on livestock grazing for food and income with this industry occupying more than 25% of the world's land base (Steinfeld et al. 2006). The ling-term sustainability of livestock grazing is also crucial for the environment. A recent FAO report attributed livestock production as a major cause of five of the most serious environmental problems: global warming, land degredation, air and water pollution, and the loss of biodiversity (Steinfeld et al. 2006). For these reasons, finding more effective approaches that guide the sustainable management of pastures is urgently needed. In Australia more than 55% of land use is for livestock grazing by sheelp and/or cattle. This land use dominate in the semi-arid and arid regions where rainfall and soil conditions are marginal for production (Commonwealth of Australia 2004). Although the level of agriculture production by conglomerates is increasing, the majority of livestock grazing within Australia remains family owned and operated (Commonwealth of Australia 2004). The sustainability of production from a grazed pasture is dependent on its botanical composition (Kemp & Dowling 1991, Kemp et al. 1996). In a grazed pasture, the dominance of an invasive grass species can impact on the functional integrity of the ecosystem, including production and nutrient cycling; wwhich will in turn, affect the income of proprietors and the ability of the system to recover from disturbance and environmental change. In Australia, $0.3 billion is spent on weed control in livestock production, but despite this substantial investment $1.9 billion is still lost in yield as a result of weeds (Sinden et al. 2004). In this paper, we adaprt a framework proposed for the restoration of degraded rainforest communities (Lamb & Gilmour 2003, Lamb et al. 2005) to compare and contrast options for recovering function integrity (i.e. a diverse set of desirable plant species that maintain key ecological processes necessary for sustainable production and nutrient cycling) within pasture communities dominated by an invasive grass species. To do this, we uase a case-study of the invasion of Eragrostis curvula (Africal lovegrss; hereafter, Lovegrass), a serious concern in Australian agricultural communities (Parsons and Cuthbertson 1992). The spread and dominance of Lovegrass is a problem because its low palatability, low nutritional content and competitiveness affect the livelihood of graziers by reducing the diversity of other plant species. We conclude by suggesting modifications to this framework for pasture ecosystems to help increase the effiency of strategies to protect functional integrity and balance social/economic and biodiversity values.
Resumo:
Streptococcus pyogenes, also known as Group A Streptococcus (GAS) has been associated with a range of diseases from the mild pharyngitis and pyoderma to more severe invasive infections such as streptococcal toxic shock. GAS also causes a number of non-suppurative post-infectious diseases such as rheumatic fever, rheumatic heart disease and glomerulonephritis. The large extent of GAS disease burden necessitates the need for a prophylactic vaccine that could target the diverse GAS emm types circulating globally. Anti-GAS vaccine strategies have focused primarily on the GAS M-protein, an extracellular virulence factor anchored to GAS cell wall. As opposed to the hypervariable N-terminal region, the C-terminal portion of the protein is highly conserved among different GAS emm types and is the focus of a leading GAS vaccine candidate, J8-DT/alum. The vaccine candidate J8-DT/alum was shown to be immunogenic in mice, rabbits and the non-human primates, hamadryas baboons. Similar responses to J8-DT/alum were observed after subcutaneous and intramuscular immunization with J8-DT/alum, in mice and in rabbits. Further assessment of parameters that may influence the immunogenicity of J8-DT demonstrated that the immune responses were identical in male and female mice and the use of alum as an adjuvant in the vaccine formulation significantly increased its immunogenicity, resulting in a long-lived serum IgG response. Contrary to the previous findings, the data in this thesis indicates that a primary immunization with J8-DT/alum (50ƒÊg) followed by a single boost is sufficient to generate a robust immune response in mice. As expected, the IgG response to J8- DT/alum was a Th2 type response consisting predominantly of the isotype IgG1 accompanied by lower levels of IgG2a. Intramuscular vaccination of rabbits with J8-DT/alum demonstrated that an increase in the dose of J8-DT/alum up to 500ƒÊg does not have an impact on the serum IgG titers achieved. Similar to the immune response in mice, immunization with J8-DT/alum in baboons also established that a 60ƒÊg dose compared to either 30ƒÊg or 120ƒÊg was sufficient to generate a robust immune response. Interestingly, mucosal infection of naive baboons with a M1 GAS strain did not induce a J8-specific serum IgG response. As J8-DT/alum mediated protection has been previously reported to be due to the J8- specific antibody formed, the efficacy of J8-DT antibodies was determined in vitro and in vivo. In vitro opsonization and in vivo passive transfer confirmed the protective potential of J8-DT antibodies. A reduction in the bacterial burden after challenge with a bioluminescent M49 GAS strain in mice that were passively administered J8-DT IgG established that protection due to J8-DT was mediated by antibodies. The GAS burden in infected mice was monitored using bioluminescent imaging in addition to traditional CFU assays. Bioluminescent GAS strains including the ‘rheumatogenic’ M1 GAS could not be generated due to limitations with transformation of GAS, however, a M49 GAS strain was utilized during BLI. The M49 serotype is traditionally a ‘nephritogenic’ serotype associated with post-streptococcal glomerulonephritis. Anti- J8-DT antibodies now have been shown to be protective against multiple GAS strains such as M49 and M1. This study evaluated the immunogenicity of J8-DT/alum in different species of experimental animals in preparation for phase I human clinical trials and provided the ground work for the development of a rapid non-invasive assay for evaluation of vaccine candidates.
Resumo:
In Australia, the spread and dominance of non-native plant species has been identified as a serious threat to rangeland biodiversity and ecosystem functioning. Rangelands extend over 70% of Australia’s land mass or more than 6 million km2. These rangelands consist of a diverse set of ecosystems including grasslands, shrub-lands, and woodlands spanning numerous climatic zones, ranging from arid to mesic. Because of the high economic, social, and environmental values, sustainable management of these vast landscapes is critical for Australia’s future. More than 2 million people live in these areas and major industries are ranching, mining, and tourism. In terms of biodiversity values, 53 of 85 of Australia’s biogeographical regions and 5 of 15 identified biodiversity hotspots are found in rangelands.
Resumo:
This PhD study has examined the population genetics of the Russian wheat aphid (RWA, Diuraphis noxia), one of the world’s most invasive agricultural pests, throughout its native and introduced global range. Firstly, this study investigated the geographic distribution of genetic diversity within and among RWA populations in western China. Analysis of mitochondrial data from 18 sites provided evidence for the long-term existence and expansion of RWAs in western China. The results refute the hypothesis that RWA is an exotic species only present in China since 1975. The estimated date of RWA expansion throughout western China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. It is concluded that western China represents the limit of the far eastern native range of this species. Analysis of microsatellite data indicated high contemporary gene flow among northern populations in western China, while clear geographic isolation between northern and southern populations was identified across the Tianshan mountain range and extensive desert regions. Secondly, this study analyzed the worldwide pathway of invasion using both microsatellite and endosymbiont genetic data. Individual RWAs were obtained from native populations in Central Asia and the Middle East and invasive populations in Africa and the Americas. Results indicated two pathways of RWA invasion from 1) Syria in the Middle East to North Africa and 2) Turkey to South Africa, Mexico and then North and South America. Very little clone diversity was identified among invasive populations suggesting that a limited founder event occurred together with predominantly asexual reproduction and rapid population expansion. The most likely explanation for the rapid spread (within two years) from South Africa to the New World is by human movement, probably as a result of the transfer of wheat breeding material. Furthermore, the mitochondrial data revealed the presence of a universal haplotype and it is proposed that this haplotype is representative of a wheat associated super-clone that has gained dominance worldwide as a result of the widespread planting of domesticated wheat. Finally, this study examined salivary gland gene diversity to determine whether a functional basis for RWA invasiveness could be identified. Peroxidase DNA sequence data were obtained for a selection of worldwide RWA samples. Results demonstrated that most native populations were polymorphic while invasive populations were monomorphic, supporting previous conclusions relating to demographic founder effects in invasive populations. Purifying selection most likely explains the existence of a universal allele present in Middle Eastern populations, while balancing selection was evident in East Asian populations. Selection acting on the peroxidase gene may provide an allele-dependent advantage linked to the successful establishment of RWAs on wheat, and ultimately their invasion potential. In conclusion, this study is the most comprehensive molecular genetic investigation of RWA population genetics undertaken to date and provides significant insights into the source and pathway of global invasion and the potential existence of a wheat-adapted genotype that has colonised major wheat growing countries worldwide except for Australia. This research has major biosecurity implications for Australia’s grain industry.
Resumo:
Madeira vine (Anredera cordifolia (Ten.) Steenis) is a climber in the angiosperm family Basellaceae. It is native to South America and has naturalised in Australia. It is regarded as a serious environmental weed because of the structural damage it causes to native vegetation. The present study, for the first time, documents anatomical and morphological traits of the leaves of A. cordifolia and considers their implications for its ecology and physiology. Plants were grown under three different light levels, and anatomical and morphological leaf characters were compared among light levels, among cohorts, and with documented traits of the related species, Basella alba L. Stomata were present on both the adaxial and abaxial sides of the leaf, with significantly more stomata on the abaxial side and under high light. This may account for the ability of this species to fix large amounts of carbon and rapidly respond to light gaps. The leaves had very narrow veins and no sclerenchyma, suggesting a low construction cost that is associated with invasive plants. There was no significant difference in any of the traits among different cohorts, which agrees with the claim that A. cordifolia primarily propagates vegetatively. The anatomy and morphology of A. cordifolia was similar to that of B. alba.
Resumo:
The invasive liana cat’s claw creeper Dolichandra unguis-cati (L.) L.G. Lohmann (syn. Macfadyena unguis-cati (L.) A.H. Gentry) exhibits intraspecific variation in leaf morphology, but this is rarely noted in the published literature. The present study documents variation in leaf morphology in two forms of the species that occur in Australia (long pod and short pod). Leaf morphology is compared between the two forms and the position of the shoots (trunk and ground) at the only two sites in which they co-occur. Leaves were categorised on the basis of leaflet number and the presence or absence of tendrils. Simple leaves were produced mainly on shoots growing along the ground and were more abundant in the short-pod form. Long-pod plants were dominated by bifoliate leaves with tendrils. Cat’s claw creeper exhibits considerably wider variation in leaf morphology than recorded previously. Variations in leaf morphology may be linked to differences in the genotype, developmental stage and plastic responses of the plants. Understanding these variations may have implications for taxonomic delimitation and improved management, particularly biological control involving leaf-feeding insects.
Resumo:
The invasive fruit fly Bactrocera invadens Drew, Tsuruta & White, and the Oriental fruit fly Bactrocera dorsalis (Hendel) are highly destructive horticultural pests of global significance. Bactrocera invadens originates from the Indian subcontinent and has recently invaded all of sub-Saharan Africa, while B. dorsalis principally occurs from the Indian subcontinent towards southern China and South-east Asia. High morphological and genetic similarity has cast doubt over whether B. invadens is a distinct species from B. dorsalis. Addressing this issue within an integrative taxonomic framework, we sampled from across the geographic distribution of both taxa and: (i) analysed morphological variation, including those characters considered diagnostic (scutum colour, length of aedeagus, width of postsutural lateral vittae, wing size, and wing shape); (ii) sequenced four loci (ITS1, ITS2, cox1 and nad4) for phylogenetic inference, and; (iii) generated a cox1 haplotype network to examine population structure. Molecular analyses included the closely related species, Bactrocera kandiensis Drew & Hancock. Scutum colour varies from red-brown to fully black for individuals from Africa and the Indian subcontinent. All individuals east of the Indian subcontinent are black except for a few red-brown individuals from China. The postsutural lateral vittae width of B. invadens is narrower than B. dorsalis from eastern Asia, but the variation is clinal, with subcontinent B. dorsalis populations intermediate in size. Aedeagus length, wing shape and wing size cannot discriminate between the two taxa. Phylogenetic analyses failed to resolve B. invadens from B. dorsalis, but did resolve B. kandiensis. Bactrocera dorsalis and B. invadens shared cox1 haplotypes, yet the haplotype network pattern does not reflect current taxonomy or patterns in thoracic colour. Some individuals of B. dorsalis/B. invadens possessed haplotypes more closely related to B. kandiensis than to conspecifics, suggestive of mitochondrial introgression between these species. The combined evidence fails to support the delimitation of B. dorsalis and B. invadens as separate biological species. Consequently, existing biological data for B. dorsalis may be applied to the invasive population in Africa. Our recommendation, in line with other recent publications, is that B. invadens be synonymized with B. dorsalis.
Resumo:
Climate change is a major threat to global biodiversity, and its impacts can act synergistically to heighten the severity of other threats. Most research on projecting species range shifts under climate change has not been translated to informing priority management strategies on the ground. We develop a prioritization framework to assess strategies for managing threats to biodiversity under climate change and apply it to the management of invasive animal species across one-sixth of the Australian continent, the Lake Eyre Basin. We collected information from key stakeholders and experts on the impacts of invasive animals on 148 of the region's most threatened species and 11 potential strategies. Assisted by models of current distributions of threatened species and their projected distributions, experts estimated the cost, feasibility, and potential benefits of each strategy for improving the persistence of threatened species with and without climate change. We discover that the relative cost-effectiveness of invasive animal control strategies is robust to climate change, with the management of feral pigs being the highest priority for conserving threatened species overall. Complementary sets of strategies to protect as many threatened species as possible under limited budgets change when climate change is considered, with additional strategies required to avoid impending extinctions from the region. Overall, we find that the ranking of strategies by cost-effectiveness was relatively unaffected by including climate change into decision-making, even though the benefits of the strategies were lower. Future climate conditions and impacts on range shifts become most important to consider when designing comprehensive management plans for the control of invasive animals under limited budgets to maximize the number of threatened species that can be protected.
Resumo:
Tephritid fruit flies (Diptera: Tephritidae) are considered by far the most important group of horticultural pests worldwide. Female fruit flies lay eggs directly into ripening fruit, where the maggots feed causing fruit loss. Each and every continent is plagued by a number of fruit fly pests, both indigenous as well as invasive ones, causing tremendous economic losses. In addition to the direct losses through damage, they can negatively impact commodity trade through restrictions to market access. The quarantine and regulatory controls put in place to manage them are expensive, while the on-farm control costs and loss of crop affect the general well-being of growers. These constraints can have huge implications on loss in revenues and limitations to developing fruit and vegetable-based agroindustries in developing, emergent and developed nations. Because fruit flies are a global problem, the study of their biology and management requires significant international attention to overcome the hurdles they pose. The Joint Food and Agriculture Organisation / International Atomic Energy Agency (FAO/IAEA) Programme on Nuclear Techniques in Food and Agriculture has been on the foreground in assisting Member States in developing and validating environment-friendly fruit fly suppression systems to support viable fresh fruit and vegetable production and export industries. Such international attention has resulted in the successful development and validation of a Sterile Insect Technique (SIT) package for the Mediterranean fruit fly. Although demands for R&D support with respect to Mediterranean fruit fly are diminishing due to successful integration of this package into sustainable control programmes against this pest in many countries, there were increasing demands from Member States in Africa, Asia and Latin America, to address other major fruit fly pests and a related, but sometimes neglected issue of tephritid species complexes of economic importance. Any research, whether it is basic or applied, requires a taxonomic framework that provides reliable and universally recognized entities and names. Among the currently recognized major fruit fly pests, there are groups of species whose morphology is very similar or identical, but biologically they are distinct species. As such, some insect populations that are grouped taxonomically within the same pest species, display different biological and genetic traits and show reproductive isolation which suggest that they are different species. On the other hand, different species may have been taxonomically described, but there may be doubt as to whether they actually represent distinct biological species or merely geographical variants of the same species. This uncertain taxonomic status has practical implications on the effective development and use of the SIT against such complexes, particularly at the time of determining which species to mass-rear, and significantly affects international movement of fruit and vegetables through the establishment of trade barriers to important agricultural commodities which are hosts to these pest tephritid species...
Resumo:
This paper examines empirically the relative influence of the degree of endangerment of wildlife species and their stated likeability on individuals' allocation of funds for their conservation. To do this, it utilises data obtained from the IUCN Red List, and likeability and fund allocation data obtained from two serial surveys of a sample of the Australian public who were requested to assess 24 Australian wildlife species from three animal classes: mammals, birds and reptiles. Between the first and second survey, respondents were provided with extra information about the focal species. This information resulted in the dominance of endangerment as the major influence on the allocation of funding of respondents for the conservation of the focal wildlife species. Our results throw doubts on the proposition in the literature that the likeability of species is the dominant influence on willingness to pay for conservation of wildlife species. Furthermore, because the public's allocation of fund for conserving wildlife species seems to be more sensitive to information about the conservation status of species than to factors influencing their likeability, greater attention to providing accurate information about the former than the latter seems justified. Keywords: Conservation of wildlife species; Contingent valuation; Endangerment of species; Likeability of species; Willingness to pay