308 resultados para Infrared emissions
Resumo:
Mid-infrared (MIR) and near-infrared (NIR) spectroscopy have been compared and evaluated for differentiating kaolinite, coal bearing kaolinite and halloysite. Kaolinite, coal bearing kaolinite and halloysite are the three relative abundant mineral of the kaolin group, especially in China. In the MIR spectra, the differences are shown in the 3000-3600 cm-1 between kaolinite and halloysite. It can not be obviously differentiated the kaolinite and halloysite, let alone kaolinite and coal bearing kaolinite. However, NIR, together with MIR, give us the sufficient evidence to differentiate the kaolinite and halloysite, especially kaolinite and coal bearing kaolinite. There are obvious differences between kaolinite and halloysite in the all range of their spectra, and it also show some difference between kaolinite and coal bearing kaolinite. Therefore, the reproducibility of measurement, signal to noise ratio and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for mineral analysis.
Resumo:
Greenhouse gas markets, where invisible gases are traded, must seem like black boxes to most people. Farmers can make money on these markets, such as the Chicago Climate Exchange, by installing methane capture technologies in animal-based systems, no-till farming, establishing grasslands, and planting trees.
Resumo:
Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems.
Resumo:
Greenhouse gas emissions from a well established, unfertilized tropical grass-legume pasture were monitored over two consecutive years using high resolution automatic sampling. Nitrous oxide emissions were highest during the summer months and were highly episodic, related more to the size and distribution of rain events than WFPS alone. Mean annual emissions were significantly higher during 2008 (5.7 ± 1.0 g N2O-N/ha/day) than 2007 (3.9 ± 0.4 and g N2O-N/ha/day) despite receiving nearly 500 mm less rain. Mean CO2 (28.2 ± 1.5 kg CO2 C/ha/day) was not significantly different (P < 0.01) between measurement years, emissions being highly dependent on temperature. A negative correlation between CO2 and WFPS at >70% indicated a threshold for soil conditions favouring denitrification. The use of automatic chambers for high resolution greenhouse gas sampling can greatly reduce emission estimation errors associated with temperature and WFPS changes.
Resumo:
An automated gas sampling methodology has been used to estimate nitrous oxide (N2O) emissions from heavy black clay soil in northern Australia where split applications of urea were applied to furrow irrigated cotton. Nitrous oxide emissions from the beds were 643 g N/ha over the 188 day measurement period (after planting), whilst the N2O emissions from the furrows were significantly higher at 967 g N/ha. The DNDC model was used to develop a full season simulation of N2O and N2 emissions. Seasonal N2O emissions were equivalent to 0.83% of applied N, with total gaseous N losses (excluding NH3) estimated to be 16% of the applied N.
Resumo:
Nitrous oxide (N2O) is primarily produced by the microbially-mediated nitrification and denitrification processes in soils. It is influenced by a suite of climate (i.e. temperature and rainfall) and soil (physical and chemical) variables, interacting soil and plant nitrogen (N) transformations (either competing or supplying substrates) as well as land management practices. It is not surprising that N2O emissions are highly variable both spatially and temporally. Computer simulation models, which can integrate all of these variables, are required for the complex task of providing quantitative determinations of N2O emissions. Numerous simulation models have been developed to predict N2O production. Each model has its own philosophy in constructing simulation components as well as performance strengths. The models range from those that attempt to comprehensively simulate all soil processes to more empirical approaches requiring minimal input data. These N2O simulation models can be classified into three categories: laboratory, field and regional/global levels. Process-based field-scale N2O simulation models, which simulate whole agroecosystems and can be used to develop N2O mitigation measures, are the most widely used. The current challenge is how to scale up the relatively more robust field-scale model to catchment, regional and national scales. This paper reviews the development history, main construction components, strengths, limitations and applications of N2O emissions models, which have been published in the literature. The three scale levels are considered and the current knowledge gaps and challenges in modelling N2O emissions from soils are discussed.
Resumo:
Nitrous oxide (N2O) is a major greenhouse gas (GHG) product of intensive agriculture. Fertilizer nitrogen (N) rate is the best single predictor of N2O emissions in row-crop agriculture in the US Midwest. We use this relationship to propose a transparent, scientifically robust protocol that can be utilized by developers of agricultural offset projects for generating fungible GHG emission reduction credits for the emerging US carbon cap and trade market. By coupling predicted N2O flux with the recently developed maximum return to N (MRTN) approach for determining economically profitable N input rates for optimized crop yield, we provide the basis for incentivizing N2O reductions without affecting yields. The protocol, if widely adopted, could reduce N2O from fertilized row-crop agriculture by more than 50%. Although other management and environmental factors can influence N2O emissions, fertilizer N rate can be viewed as a single unambiguous proxy—a transparent, tangible, and readily manageable commodity. Our protocol addresses baseline establishment, additionality, permanence, variability, and leakage, and provides for producers and other stakeholders the economic and environmental incentives necessary for adoption of agricultural N2O reduction offset projects.
Resumo:
The Mobile Emissions Assessment System for Urban and Regional Evaluation (MEASURE) model provides an external validation capability for hot stabilized option; the model is one of several new modal emissions models designed to predict hot stabilized emission rates for various motor vehicle groups as a function of the conditions under which the vehicles are operating. The validation of aggregate measurements, such as speed and acceleration profile, is performed on an independent data set using three statistical criteria. The MEASURE algorithms have proved to provide significant improvements in both average emission estimates and explanatory power over some earlier models for pollutants across almost every operating cycle tested.
Resumo:
The structure and thermal stability between typical China kaolinite and halloysite were analysed by X-ray diffraction (XRD), infrared spectroscopy, infrared emission spectroscopy (IES) and Raman spectroscopy. Infrared emission spectroscopy over the temperature range of 300 to 700 °C has been used to characterise the thermal decomposition of both kaolinite and halloysite. Halloysite is characterised by two bands in the water bending region at 1629 and 1648 cm-1, attributed to structure water and coordinated water in the interlayer. Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm-1 are observed for both kaolinite and halloysite. In the 550 °C infrared emission spectrum of halloysite is similar to that of kaolinite in 650-1350 cm-1 region. The infrared emission spectra of halloysite were found to be considerably different to that of kaolinite at lower temperatures. This difference is attributed to the fundamental difference in the structure of the two minerals.
Resumo:
The thermal decomposition of halloysite-potassium acetate intercalation compound was investigated by thermogravimetric analysis and infrared emission spectroscopy. The X-ray diffraction patterns indicated that intercalation of potassium acetate into halloysite caused an increase of the basal spacing from 1.00 to 1.41 nm. The thermogravimetry results show that the mass losses of intercalation the compound occur in main three main steps, which correspond to (a) the loss of adsorbed water (b) the loss of coordination water and (c) the loss of potassium acetate and dehydroxylation. The temperature of dehydroxylation and dehydration of halloysite is decreased about 100 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the halloysite intercalation compound when the temperature is raised. The dehydration of the intercalation compound is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm-1. Dehydration was completed by 300 °C and partial dehydroxylation by 350 °C. The inner hydroxyl group remained until around 500 °C.