281 resultados para Industrial buildings Design and construction
Resumo:
This publication consists of a volume of papers presented at the workshop of the CIB Task Group 58: Clients and Construction Innovation, held on May 18- 19, 2009 at the University of Alberta in Edmonton, Canada. The workshop theme, “Leveraging Innovation for Sustainable Construction”, reflects a growing concern among clients for perspectives, approaches, and tools that will secure the practice of construction economically, socially, and environmentally. This collection encompasses some of the most incisive assessments of the challenges facing the construction industry today from a range of researchers and industry practitioners who are leading the way for tomorrow’s innovations. It provides a useful documentation of the ongoing conversation regarding innovation and sustainability issues and a foundation of knowledge for future research and development. The papers contained in this volume explore the workshop’s overarching theme of how to leverage innovation to increase the sustainability of the construction process and product. Participants sought to generate discussion on the topics of innovation and sustainability within the construction field, to share international examples of innovation from the research community and from industry, and to establish a point of reference for ongoing enquiry. In particular, our contributors have noted the value of learning through practice in order to orient research based on real-world industry experience. Chapters two and three present complementary models of sustainable research programs through the three parts collaboration of government, industry, and academia. Chapters four and five explore new tools and forms of technological innovation as they are deployed to improve construction project management and set the direction for advances in research. Chapters six, seven, and eight closely study practical examples of innovation in large-scale construction projects, showing with concrete results the impact of applying creative methods and best practices to the field. Innovation and sustainability in construction are truly global efforts; these papers illustrate how we can draw on international examples and cooperative organizations to address these important issues for long-term benefit of the industry.
Resumo:
The Commonwealth Department of Industry, Science and Resources is identifying best practice case study examples of supply chain management within the building and construction industry to illustrate the concepts, innovations and initiatives that are at work. The projects provide individual enterprises with examples of how to improve their performance, and the competitiveness of the industry as a whole.
Resumo:
In order to promote green building practice in Australia, the Green Building Council of Australia (GBCA) launched the Green Star rating tools for various types of buildings built since 2003. Of these, the Green Star-Education rating tool addresses sustainability issues during the design and construction phrases of education facility development. It covers a number of categories, including Management, Indoor Environment Quality, Energy, Transport, Water, Materials, Land Use & Ecology, Emissions and Innovation. This paper reviews the use of the Green Star system in Australian education facilities construction and the potential challenges associated with Green Star- Education implementation. Score sheets of 34 education projects across Australia that achieved Green Star certification were collected and analysed. The percentage of green star points obtained within each category and sub-category (credits) for each project were analysed to illustrate the achievement of credits. The results show that management-related credits and ecology-related credits are the easiest and most difficult to obtain respectively. The study also indicted that 6 Green Star education projects obtained particularly high percentages in the Innovation category. The investigation of points obtained in each category provides prospective Green Star applicants with insights into credit achievement for future projects.
Resumo:
With significant population growth experienced in South East Queensland over the past two decades and a high rate of growth expected to continue in coming decades, the Queensland Government is promoting urban consolidation planning policies to manage growth sustainably. Multi-residential buildings will play an important role in facilitating the increased densities which urban consolidation policies imply. However, a major flood event in January 2011 has brought to light the vulnerability of certain types of multi-residential typologies to power outages. The crisis conditions exposed how contemporary building design and construction practices, coupled with regulatory and planning issues, appear to have compromised the resilience and habitability of multi-storey residential buildings. In the greater urban area of Brisbane, Queensland, the debilitating dependence that certain types of apartment buildings have on mains electricity was highlighted by residents’ experiences of the Brisbane River flood disaster, before, during and after the event. This research examined high density residential buildings in West End, Brisbane, an inner city suburb which was severely affected by the flood and is earmarked for significant urban densification under the Brisbane City Plan. Medium-to-high-density residential buildings in the suburb were mapped in flooded and non-flooded locations and a database containing information about the buildings was created. Parameters included date of construction, number of storeys, systems of access and circulation, and potential for access to natural light and ventilation for habitable areas. A series of semi-structured interviews were conducted with residents involved in the owners’ management committees of several buildings to verify information the mapping could not provide. The interviews identified a number of critical systems failures due to power outage which had a significant impact on residents’ wellbeing, comfort and safety. Building services such as lifts, running water, fire alarms, security systems and air-conditioning ceased to operate when power was disconnected to neighbourhoods and buildings in anticipation of rising flood waters. Lack of access to buildings and dwellings, lack of safety, lack of building security, and lack of thermal comfort affected many residents whether or not their buildings were actually subjected to inundation, with some buildings rendered uninhabitable for a prolonged period. The extent of the impact on residents was dramatically influenced by the scale and type of building inhabited, with those dwelling in buildings under a 25m height limit, with a single lift, found to be most affected. The energy-dependency and strong trend of increasing power demands of high-rise buildings is well-documented. Extended electricity outages such as the one brought about by the 2011 flood in Queensland are likely to happen more frequently than the 50-year average of the flood event itself. Electricity blackouts can result from a number of man-made or natural causes, including shortages caused by demand exceeding supply. This paper highlights the vulnerability of energy-dependent buildings to power outages and investigates options for energy security for occupants of multi-storey buildings and makes recommendations to increase resilience and general liveability in multi-residential buildings in the subtropics through design modifications.
Resumo:
Numerous different and sometimes discrepant interests can be affected, both positively and negatively, throughout the course of a major infrastructure and construction (MIC) project. Failing to address and meet the concerns and expectations of the stakeholders involved has resulted in many project failures. One way to address this issue is through a participatory approach to project decision making. Whether the participation mechanism is effective or not depends largely on the client/owner. This paper provides a means of systematically evaluating the effectiveness of the public participation exercise, or even the whole project, through the measurement of stakeholder satisfaction. Since the process of satisfaction measurement is complicated and uncertain, requiring approximate reasoning involving human intuition, a fuzzy approach is adopted. From this, a multi-factor hierarchical fuzzy comprehensive evaluation model is established to facilitate the evaluation of satisfaction in both single stakeholder group and overall MIC project stakeholders.
Resumo:
New substation technology, such as non-conventional instrument transformers,and a need to reduce design and construction costs, are driving the adoption of Ethernet based digital process bus networks for high voltage substations. Protection and control applications can share a process bus, making more efficient use of the network infrastructure. This paper classifies and defines performance requirements for the protocols used in a process bus on the basis of application. These include GOOSE, SNMP and IEC 61850-9-2 sampled values. A method, based on the Multiple Spanning Tree Protocol (MSTP) and virtual local area networks, is presented that separates management and monitoring traffic from the rest of the process bus. A quantitative investigation of the interaction between various protocols used in a process bus is described. These tests also validate the effectiveness of the MSTP based traffic segregation method. While this paper focusses on a substation automation network, the results are applicable to other real-time industrial networks that implement multiple protocols. High volume sampled value data and time-critical circuit breaker tripping commands do not interact on a full duplex switched Ethernet network, even under very high network load conditions. This enables an efficient digital network to replace a large number of conventional analog connections between control rooms and high voltage switchyards.
Resumo:
The Bouncing Back Project, which began after the Queensland flood event in January 2011, has organically grown through a number of reiterations as per the diagram above. In the August 2011 it resulted in the physical construction of an Emergency Shelter [designed by GreenLeaf Engineers] in Sydney at the Customs House in Circular Quay and a conference paper publication at the AASA conference. To date this research has progressed without any research grant funding and has resulted in significant media interest. During the construction of the Emergency Shelter we collected a wide range of multimedia data which is being compilled into a documentary focusing on the architecture students’ experience throughout the iterations of Bouncing Back.
Resumo:
Wireless networked control systems (WNCSs) have been widely used in the areas of manufacturing and industrial processing over the last few years. They provide real-time control with a unique characteristic: periodic traffic. These systems have a time-critical requirement. Due to current wireless mechanisms, the WNCS performance suffers from long time-varying delays, packet dropout, and inefficient channel utilization. Current wirelessly networked applications like WNCSs are designed upon the layered architecture basis. The features of this layered architecture constrain the performance of these demanding applications. Numerous efforts have attempted to use cross-layer design (CLD) approaches to improve the performance of various networked applications. However, the existing research rarely considers large-scale networks and congestion network conditions in WNCSs. In addition, there is a lack of discussions on how to apply CLD approaches in WNCSs. This thesis proposes a cross-layer design methodology to address the issues of periodic traffic timeliness, as well as to promote the efficiency of channel utilization in WNCSs. The design of the proposed CLD is highlighted by the measurement of the underlying network condition, the classification of the network state, and the adjustment of sampling period between sensors and controllers. This period adjustment is able to maintain the minimally allowable sampling period, and also maximize the control performance. Extensive simulations are conducted using the network simulator NS-2 to evaluate the performance of the proposed CLD. The comparative studies involve two aspects of communications, with and without using the proposed CLD, respectively. The results show that the proposed CLD is capable of fulfilling the timeliness requirement under congested network conditions, and is also able to improve the channel utilization efficiency and the proportion of effective data in WNCSs.
Resumo:
A key challenge for the 21st Century is to make our cities more liveable and foster economically sustainable, environmentally responsible, and socially inclusive communities. Design thinking, particularly a human-centred approach, offers a way to tackle this challenge. Findings from two recent Australian research projects highlight how facilitating sustainable, liveable communities in a humid sub-tropical environment requires an in-depth understanding of people’s perspectives, experiences and practices. Project 1 (‘Research House’) documents the reflections of a family who lived in a ‘test’ sustainable house for two years, outlining their experience and evaluations of universal design and sustainable technologies. The study family was very impressed with the natural lighting, natural ventilation, spaciousness and ease of access, which contributed significantly to their comfort and the liveability of their home. Project 2 (‘Inner-Urban High Density Living’) explored Brisbane residents’ opinions about high-density living, through a survey (n=636), interviews (n=24), site observations (over 300 hours) and environmental monitoring, assessing opinions on the liveability of their individual dwelling, the multi-unit host building and the surrounding neighbourhood. Nine areas, categorised into three general domains, were identified as essential for enhancing high density liveability. In terms of the dwelling, thermal comfort/ventilation, natural light, noise mitigation were important; shared space, good neighbour protocols, and support for environmentally sustainable behaviour were desired in the building/complex; and accessible/sustainable transport, amenities and services, sense of community were considered important in the surrounding neighbourhood. Combined, these findings emphasise the importance and complexity associated with designing liveable building, cities and communities, illustrating how adopting a design thinking, human-centred approach will help create sustainable communities that will meet the needs of current and future generations.
Resumo:
Fire incident in buildings is common in Hong Kong and this could lead to heavy casualties due to its high population density, so the fire safety design of the framed structure is an important research topic. This paper describes a computer tool for determination of capacity of structural safety against various fire scenarios and the well-accepted second-order direct plastic analysis is adopted for simulation of material yielding and buckling. A computer method is developed to predict structural behaviour of bare steel framed structures at elevated temperatures but the work can be applied to structures made of other materials. These effects of thermal expansion and material degradation due to heating are required to be considered in order to capture the actual behavior of the structure under fire. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. Several numerical and experimental verifications of framed structures are presented and compared against solutions by other researchers. The proposed method allows us to adopt the truly performance-based structural fire analysis and design with significant saving in cost and time.