178 resultados para Impact assessment
Resumo:
In recent years, the problems resulting from unsustainable subdivision development have become significant problems in the Bangkok Metropolitan Region (BMR), Thailand. Numbers of government departments and agencies have tried to eliminate the problems by introducing the rating tools to encourage the higher sustainability levels of subdivision development in BMR, such as the Environmental Impact Assessment Monitoring Award (EIA-MA) and the Thai’s Rating for Energy and Environmental Sustainability of New construction and major renovation (TREES-NC). However, the EIA-MA has included the neighbourhood designs in the assessment criteria, but this requirement applies to large projects only. Meanwhile, TREES-NC has focused only on large scale buildings such as condominiums, office buildings, and is not specific for subdivision neighbourhood designs. Recently, the new rating tool named “Rating for Subdivision Neighbourhood Sustainability Design (RSNSD)” has been developed. Therefore, the validation process of RSNSD is still required. This paper aims to validate the new rating tool for subdivision neighbourhood design in BMR. The RSNSD has been validated by applying the rating tool to eight case study subdivisions. The result of RSNSD by data generated through surveying subdivisions will be compared to the existing results from the EIA-MA. The selected cases include of one “Excellent Award”, two “Very Good Award”, and five non-rated subdivision developments. This paper expects to prove the credibility of RSNSD before introducing to the real subdivision development practises. The RSNSD could be useful to encourage higher sustainability subdivision design level, and then protect the problems from further subdivision development in BMR.
Resumo:
Volatile properties of particle emissions from four compressed natural gas (CNG) and four diesel buses were investigated under steady state and transient driving modes on a chassis dynamometer. The exhaust was diluted utilising a full-flow continuous volume sampling system and passed through a thermodenuder at controlled temperature. Particle number concentration and size distribution were measured with a condensation particle counter and a scanning mobility particle sizer, respectively. We show that, while almost all the particles emitted by the CNG buses were in the nanoparticle size range, at least 85% and 98% were removed at 100ºC and 250ºC, respectively. Closer analysis of the volatility of particles emitted during transient cycles showed that volatilisation began at around 40°C with the majority occurring by 80°C. Particles produced during hard acceleration from rest exhibited lower volatility than that produced during other times of the cycle. Based on our results and the observation of ash deposits on the walls of the tailpipes, we suggest that these non-volatile particles were composed mostly of ash from lubricating oil. Heating the diesel bus emissions to 100ºC removed ultrafine particle numbers by 69% to 82% when a nucleation mode was present and just 18% when it was not.
Resumo:
The current regulatory approach to coal seam gas projects in Queensland is based on the philosophy of adaptive environmental management. This method of “learning by doing” is implemented in Queensland primarily through the imposition of layered monitoring and reporting duties on the coal seam gas operator alongside obligations to compensate and “make good” harm caused. The purpose of this article is to provide a critical review of the Queensland regulatory approach to the approval and minimisation of adverse impacts from coal seam gas activities. Following an overview of the hallmarks of an effective adaptive management approach, this article begins by addressing the mosaic of approval processes and impact assessment regimes that may apply to coal seam gas projects. This includes recent Strategic Cropping Land reforms. This article then turns to consider the preconditions for land access in Queensland and the emerging issues for landholders relating to the negotiation of access and compensation agreements. This article then undertakes a critical review of the environmental duties imposed on coal seam gas operators relating to hydraulic fracturing, well head leaks, groundwater management and the disposal and beneficial use of produced water. Finally, conclusions are drawn regarding the overall effectiveness of the Queensland framework and the lessons that may be drawn from Queensland’s adaptive environmental management approach.
Resumo:
Many governments world-wide are increasingly encouraging the involvement of interested individuals, groups and organisations in their publicinfrastructure and construction (PIC) projects as a means of improving the openness, transparency and accountability of the decision-making process and help improve the projects’ long-term viability and benefits to the community. In China, however, the current participatory mechanism at the project level exists only as part of the environmental impact assessment (EIA) process. With an increasing demand for PIC projects and social equality in China, this suggests a need to bring the participatory process into line with international practice. The aim of this paper, therefore, is to identify the weaknesses of EIA-basedpublicparticipation in China and the means by which it may be improved for the whole lifecycle of PIC schemes. To do this, the results of a series of interviews with a diverse group of experts is reported which analyse the nature and extent of existing problems of publicparticipation in EIA and suggestions for improvement. These indicate that the current level of participation in PIC projects is quite limited, particularly in the crucial earlier stages, primarily due to traditional culture and values, uneven progress in the adoption of participatory mechanisms, the risk of not meeting targets and lack of confidence in public competence. Finally, aprocess flowchart is proposed to guide construction practitioners and the community in general.
Resumo:
Recent studies suggest that meta-evaluation can be valuable in developing new approaches to evaluation, building evaluation capacities, and enhancing organizational learning. These new extensions of the concept of meta-evaluation are significant, given the growing emphasis on improving the quality and effectiveness of evaluation practices in the South Asian region. Following a review of the literature, this paper presents a case study of the use of concurrent meta-evaluation in the four-year project Assessing Communication for Social Change which developed and trialled a participatory impact assessment methodology in collaboration with a development communication Non-government organization (NGO) in Nepal. Key objectives of the meta-evaluation included to: continuously develop, adapt and improve the impact assessment methodology, Monitoring and Evaluation (M&E) systems and process and other project activities; identify impacts of the project; and build capacities in critical reflection and review. Our analysis indicates that this meta-evaluation was essential to understanding various constraints related to the organizational context that affected the success of the project and the development of improved M&E systems and capacities within the NGO. We identified several limitations of our meta-evaluation methods, which were balanced by the strengths of other methods. Our case study suggests that as well as assessing the quality, credibility and value of evaluation practices, meta-evaluations need to focus on important contextual issues that can have significant impacts on the outcomes of participatory evaluation projects. They include hierarchical organizational cultures, communication barriers, power/knowledge relations, and the time and resources available. Meta-evaluations also need to consider wider issues such as the sustainability of evaluation systems and approaches.
Resumo:
Transport Impact Assessment (TIA) -Generally a short range transport planning activity -Assess transport impacts of new developments or expansions -Present solutions to mitigate impacts Problems with TIA Process -Private vehicles focus (i.e. Veh Trip Ends) -Proxy variables (e.g. 100sqm GFA) -Trip generation rates (e.g. VTE/proxy) -Little info/guidance on trip chaining effects -Little info/guidance on non-PV modes Requires significant professional judgment
Resumo:
The advancements of technology in the field of public transport have been considerable. Information Technology (IT) has made the dissemination of information effortless, contributing to reduced perceived waiting time, increased sense of security, and value for money. Nevertheless, and in light of the ever more obvious widespread presence of powerful mobile devices, it seems that the use of technology may be geared towards supplementary services other than telematics. Looking at it from a passenger’s perspective, this article provides an overview of what IT-based services are currently offered in public transport and what is their assessed impact. We finalise by putting forward possible directions that future services might follow, and stress out the necessity to come up with frameworks that enable for the impact assessment on service quality and customer satisfaction.
Resumo:
Broad, early definitions of sustainable development have caused confusion and hesitation among local authorities and planning professionals. This confusion has arisen because loosely defined principles of sustainable development have been employed when setting policies and planning projects, and when gauging the efficiencies of these policies in the light of designated sustainability goals. The question of how this theory-rhetoric-practice gap can be filled is the main focus of this chapter. It examines the triple bottom line approach–one of the sustainability accounting approaches widely employed by governmental organisations–and the applicability of this approach to sustainable urban development. The chapter introduces the ‘Integrated Land Use and Transportation Indexing Model’ that incorporates triple bottom line considerations with environmental impact assessment techniques via a geographic, information systemsbased decision support system. This model helps decision-makers in selecting policy options according to their economic, environmental and social impacts. Its main purpose is to provide valuable knowledge about the spatial dimensions of sustainable development, and to provide fine detail outputs on the possible impacts of urban development proposals on sustainability levels. In order to embrace sustainable urban development policy considerations, the model is sensitive to the relationship between urban form, travel patterns and socio-economic attributes. Finally, the model is useful in picturing the holistic state of urban settings in terms of their sustainability levels, and in assessing the degree of compatibility of selected scenarios with the desired sustainable urban future.
Resumo:
An online survey was conducted to investigate the views and experiences of Australian traffic and transport professionals about practical problems and issues in terms of trip generation and trip chaining for use in Transport Impact Assessment (TIA). Findings from this survey revealed that there is a shortage of appropriate data related to trip generation estimation for use in TIAs in Australia. Establishing a National Trip Generation Database (NTGD) with a centralised responsible organisation for collecting and publishing trip generation data based on federal and state governments’ contribution was found the most accepted solution for resolving this shortage as well as providing national standards and guidelines associated with trip generation definitions, data collection methodology, and TIA preparation process based on updated research. Finally, the study recognised the importance of the trip chaining effects on trip generation estimation and identified most prevalent land uses subject to trip chaining in terms of TIA.
Resumo:
Barmah Forest virus (BFV) disease is the second most common mosquito-borne disease in Australia, but the linkages of the wetlands and climate zones with BFV transmission remain unclear. We aimed to examine the relationship between the wetlands, climate zones and BFV risk in Queensland, Australia. Data on the wetlands, climate zones, population and BFV cases for the period 1992 to 2008 were obtained from relevant government agencies. BFV risk was grouped as low-, medium- and high-level based on BFV incidence percentiles. The buffer zones around each BFV case were made using 1, 5, 10, 15, 20, 25 and 50 km distances. We performed a discriminant analysis to determine the differences between wetland classes and BFV risk within each climate zone. The discriminant analyses show that saline 1, riverine and saline tidal influence were the most significant contributors to BFV risk in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. These models had classification accuracies of 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV risk varies with wetland class and climate zone. The discriminant analysis is a useful tool to quantify the links between wetlands, climate zones and BFV risk.
Resumo:
This report presents the findings on a baseline study of Australia's community recycling enterprises(CREs). The study sought to document the activities and impacts of these enterprises and to understand the conditions under which they succeed. The purposes of the research were to generate evidence that can contribute to the development of practice and policy support for CREs, and to provide information that is useful to community groups wishing to establish new CREs. The study included a review of the existing literature in relation to CREs, an online survey of Australian CREs, and in-depth case studies of three CREs from various regions within Australia
Resumo:
Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
The main objective of this paper is to describe the development of a remote sensing airborne air sampling system for Unmanned Aerial Systems (UAS) and provide the capability for the detection of particle and gas concentrations in real time over remote locations. The design of the air sampling methodology started by defining system architecture, and then by selecting and integrating each subsystem. A multifunctional air sampling instrument, with capability for simultaneous measurement of particle and gas concentrations was modified and integrated with ARCAA’s Flamingo UAS platform and communications protocols. As result of the integration process, a system capable of both real time geo-location monitoring and indexed-link sampling was obtained. Wind tunnel tests were conducted in order to evaluate the performance of the air sampling instrument in controlled nonstationary conditions at the typical operational velocities of the UAS platform. Once the remote fully operative air sampling system was obtained, the problem of mission design was analyzed through the simulation of different scenarios. Furthermore, flight tests of the complete air sampling system were then conducted to check the dynamic characteristics of the UAS with the air sampling system and to prove its capability to perform an air sampling mission following a specific flight path.
Resumo:
Multi-Objective optimization for designing of a benchmark cogeneration system known as CGAM cogeneration system has been performed. In optimization approach, the thermoeconomic and Environmental aspects have been considered, simultaneously. The environmental objective function has been defined and expressed in cost terms. One of the most suitable optimization techniques developed using a particular class of search algorithms known as; Multi-Objective Particle Swarm Optimization (MOPSO) algorithm has been used here. This approach has been applied to find the set of Pareto optimal solutions with respect to the aforementioned objective functions. An example of fuzzy decision-making with the aid of Bellman-Zadeh approach has been presented and a final optimal solution has been introduced.
Resumo:
Natural disasters can have adverse effect on human lives. To raise the awareness of research and better combat future events, it is important to identify recent research trends in the area of post disaster reconstruction (PDR). The authors used a three-round literature review strategy to study journal papers published in the last decade that are related to PDR with specific conditions using the Scopus search engine. A wide range of PDR related papers from a general perspective was examined in the first two rounds while the final round established 88 papers as target publications through visual examination of the abstracts, keywords and as necessary, main texts. These papers were analysed in terms of research origins, active researchers, research organisations, most cited papers, regional concerns, major themes and deliverables, for clues of the past trends and future directions. The need for appropriate PDR research is increasingly recognised. The publication number multiplied 5 times from 2002 to 2012. For PDR research with a construction perspective, the increase is sixfold. Developing countries such as those in Asia attract almost 50% researchers' attention for regional concerns while the US is the single most concentrated (24%) country. Africa is hardly represented. Researchers in developed countries lead in worldwide PDR research. This contrasts to the need for expertise in developing countries. Past works focused on waste management, stakeholder analysis, resourcing, infrastructure issue, resilience and vulnerability, reconstruction approach, sustainable reconstruction and governance issues. Future research should respond to resourcing, integrated development, sustainability and resilience building to cover the gaps. By means of a holistic summary and structured analysis of key patterns, the authors hope to provide a streamlined access to existing research findings and make predictions of future trends. They also hope to encourage a more holistic approach to PDR research and international collaborations.