532 resultados para Image processing


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Affine covariant local image features are a powerful tool for many applications, including matching and calibrating wide baseline images. Local feature extractors that use a saliency map to locate features require adaptation processes in order to extract affine covariant features. The most effective extractors make use of the second moment matrix (SMM) to iteratively estimate the affine shape of local image regions. This paper shows that the Hessian matrix can be used to estimate local affine shape in a similar fashion to the SMM. The Hessian matrix requires significantly less computation effort than the SMM, allowing more efficient affine adaptation. Experimental results indicate that using the Hessian matrix in conjunction with a feature extractor that selects features in regions with high second order gradients delivers equivalent quality correspondences in less than 17% of the processing time, compared to the same extractor using the SMM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Teleradiology allows medical images to be transmitted over electronic networks for clinical interpretation, and for improved healthcare access, delivery and standards. Although, such remote transmission of the images is raising various new and complex legal and ethical issues, including image retention and fraud, privacy, malpractice liability, etc., considerations of the security measures used in teleradiology remain unchanged. Addressing this problem naturally warrants investigations on the security measures for their relative functional limitations and for the scope of considering them further. In this paper, starting with various security and privacy standards, the security requirements of medical images as well as expected threats in teleradiology are reviewed. This will make it possible to determine the limitations of the conventional measures used against the expected threats. Further, we thoroughly study the utilization of digital watermarking for teleradiology. Following the key attributes and roles of various watermarking parameters, justification for watermarking over conventional security measures is made in terms of their various objectives, properties, and requirements. We also outline the main objectives of medical image watermarking for teleradiology, and provide recommendations on suitable watermarking techniques and their characterization. Finally, concluding remarks and directions for future research are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The rank and census are two filters based on order statistics which have been applied to the image matching problem for stereo pairs. Advantages of these filters include their robustness to radiometric distortion and small amounts of random noise, and their amenability to hardware implementation. In this paper, a new matching algorithm is presented, which provides an overall framework for matching, and is used to compare the rank and census techniques with standard matching metrics. The algorithm was tested using both real stereo pairs and a synthetic pair with ground truth. The rank and census filters were shown to significantly improve performance in the case of radiometric distortion. In all cases, the results obtained were comparable to, if not better than, those obtained using standard matching metrics. Furthermore, the rank and census have the additional advantage that their computational overhead is less than these metrics. For all techniques tested, the difference between the results obtained for the synthetic stereo pair, and the ground truth results was small.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We applied a texture-based flow visualisation technique to a numerical hydrodynamic model of the Pumicestone Passage in southeast Queensland, Australia. The quality of the visualisations using our flow visualisation tool, are compared with animations generated using more traditional drogue release plot and velocity contour and vector techniques. The texture-based method is found to be far more effective in visualising advective flow within the model domain. In some instances, it also makes it easier for the researcher to identify specific hydrodynamic features within the complex flow regimes of this shallow tidal barrier estuary as compared with the direct and geometric based methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose a computationally efficient image border pixel based watermark embedding scheme for medical images. We considered the border pixels of a medical image as RONI (region of non-interest), since those pixels have no or little interest to doctors and medical professionals irrespective of the image modalities. Although RONI is used for embedding, our proposed scheme still keeps distortion at a minimum level in the embedding region using the optimum number of least significant bit-planes for the border pixels. All these not only ensure that a watermarked image is safe for diagnosis, but also help minimize the legal and ethical concerns of altering all pixels of medical images in any manner (e.g, reversible or irreversible). The proposed scheme avoids the need for RONI segmentation, which incurs capacity and computational overheads. The performance of the proposed scheme has been compared with a relevant scheme in terms of embedding capacity, image perceptual quality (measured by SSIM and PSNR), and computational efficiency. Our experimental results show that the proposed scheme is computationally efficient, offers an image-content-independent embedding capacity, and maintains a good image quality

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microvessel density (MVD) is a widely used surrogate measure of angiogenesis in pathological specimens and tumour models. Measurement of MVD can be achieved by several methods. Automation of counting methods aims to increase the speed, reliability and reproducibility of these techniques. The image analysis system described here enables MVD measurement to be carried out with minimal expense in any reasonably equipped pathology department or laboratory. It is demonstrated that the system translates easily between tumour types which are suitably stained with minimal calibration. The aim of this paper is to offer this technique to a wider field of researchers in angiogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There are several methods for determining the proteoglycan content of cartilage in biomechanics experiments. Many of these include assay-based methods and the histochemistry or spectrophotometry protocol where quantification is biochemically determined. More recently a method based on extracting data to quantify proteoglycan content has emerged using the image processing algorithms, e.g., in ImageJ, to process histological micrographs, with advantages including time saving and low cost. However, it is unknown whether or not this image analysis method produces results that are comparable to those obtained from the biochemical methodology. This paper compares the results of a well-established chemical method to those obtained using image analysis to determine the proteoglycan content of visually normal (n=33) and their progressively degraded counterparts with the protocols. The results reveal a strong linear relationship with a regression coefficient (R2) = 0.9928, leading to the conclusion that the image analysis methodology is a viable alternative to the spectrophotometry.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Field robots often rely on laser range finders (LRFs) to detect obstacles and navigate autonomously. Despite recent progress in sensing technology and perception algorithms, adverse environmental conditions, such as the presence of smoke, remain a challenging issue for these robots. In this paper, we investigate the possibility to improve laser-based perception applications by anticipating situations when laser data are affected by smoke, using supervised learning and state-of-the-art visual image quality analysis. We propose to train a k-nearest-neighbour (kNN) classifier to recognise situations where a laser scan is likely to be affected by smoke, based on visual data quality features. This method is evaluated experimentally using a mobile robot equipped with LRFs and a visual camera. The strengths and limitations of the technique are identified and discussed, and we show that the method is beneficial if conservative decisions are the most appropriate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A cell classification algorithm that uses first, second and third order statistics of pixel intensity distributions over pre-defined regions is implemented and evaluated. A cell image is segmented into 6 regions extending from a boundary layer to an inner circle. First, second and third order statistical features are extracted from histograms of pixel intensities in these regions. Third order statistical features used are one-dimensional bispectral invariants. 108 features were considered as candidates for Adaboost based fusion. The best 10 stage fused classifier was selected for each class and a decision tree constructed for the 6-class problem. The classifier is robust, accurate and fast by design.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Real-time image analysis and classification onboard robotic marine vehicles, such as AUVs, is a key step in the realisation of adaptive mission planning for large-scale habitat mapping in previously unexplored environments. This paper describes a novel technique to train, process, and classify images collected onboard an AUV used in relatively shallow waters with poor visibility and non-uniform lighting. The approach utilises Förstner feature detectors and Laws texture energy masks for image characterisation, and a bag of words approach for feature recognition. To improve classification performance we propose a usefulness gain to learn the importance of each histogram component for each class. Experimental results illustrate the performance of the system in characterisation of a variety of marine habitats and its ability to operate onboard an AUV's main processor suitable for real-time mission planning.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this research, we introduce a new blind steganalysis in detecting grayscale JPEG images. Features-pooling method is employed to extract the steganalytic features and the classification is done by using neural network. Three different steganographic models are tested and classification results are compared to the five state-of-the-art blind steganalysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent advances suggest that encoding images through Symmetric Positive Definite (SPD) matrices and then interpreting such matrices as points on Riemannian manifolds can lead to increased classification performance. Taking into account manifold geometry is typically done via (1) embedding the manifolds in tangent spaces, or (2) embedding into Reproducing Kernel Hilbert Spaces (RKHS). While embedding into tangent spaces allows the use of existing Euclidean-based learning algorithms, manifold shape is only approximated which can cause loss of discriminatory information. The RKHS approach retains more of the manifold structure, but may require non-trivial effort to kernelise Euclidean-based learning algorithms. In contrast to the above approaches, in this paper we offer a novel solution that allows SPD matrices to be used with unmodified Euclidean-based learning algorithms, with the true manifold shape well-preserved. Specifically, we propose to project SPD matrices using a set of random projection hyperplanes over RKHS into a random projection space, which leads to representing each matrix as a vector of projection coefficients. Experiments on face recognition, person re-identification and texture classification show that the proposed approach outperforms several recent methods, such as Tensor Sparse Coding, Histogram Plus Epitome, Riemannian Locality Preserving Projection and Relational Divergence Classification.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Traditional nearest points methods use all the samples in an image set to construct a single convex or affine hull model for classification. However, strong artificial features and noisy data may be generated from combinations of training samples when significant intra-class variations and/or noise occur in the image set. Existing multi-model approaches extract local models by clustering each image set individually only once, with fixed clusters used for matching with various image sets. This may not be optimal for discrimination, as undesirable environmental conditions (eg. illumination and pose variations) may result in the two closest clusters representing different characteristics of an object (eg. frontal face being compared to non-frontal face). To address the above problem, we propose a novel approach to enhance nearest points based methods by integrating affine/convex hull classification with an adapted multi-model approach. We first extract multiple local convex hulls from a query image set via maximum margin clustering to diminish the artificial variations and constrain the noise in local convex hulls. We then propose adaptive reference clustering (ARC) to constrain the clustering of each gallery image set by forcing the clusters to have resemblance to the clusters in the query image set. By applying ARC, noisy clusters in the query set can be discarded. Experiments on Honda, MoBo and ETH-80 datasets show that the proposed method outperforms single model approaches and other recent techniques, such as Sparse Approximated Nearest Points, Mutual Subspace Method and Manifold Discriminant Analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Existing multi-model approaches for image set classification extract local models by clustering each image set individually only once, with fixed clusters used for matching with other image sets. However, this may result in the two closest clusters to represent different characteristics of an object, due to different undesirable environmental conditions (such as variations in illumination and pose). To address this problem, we propose to constrain the clustering of each query image set by forcing the clusters to have resemblance to the clusters in the gallery image sets. We first define a Frobenius norm distance between subspaces over Grassmann manifolds based on reconstruction error. We then extract local linear subspaces from a gallery image set via sparse representation. For each local linear subspace, we adaptively construct the corresponding closest subspace from the samples of a probe image set by joint sparse representation. We show that by minimising the sparse representation reconstruction error, we approach the nearest point on a Grassmann manifold. Experiments on Honda, ETH-80 and Cambridge-Gesture datasets show that the proposed method consistently outperforms several other recent techniques, such as Affine Hull based Image Set Distance (AHISD), Sparse Approximated Nearest Points (SANP) and Manifold Discriminant Analysis (MDA).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

While formal definitions and security proofs are well established in some fields like cryptography and steganography, they are not as evident in digital watermarking research. A systematic development of watermarking schemes is desirable, but at present their development is usually informal, ad hoc, and omits the complete realization of application scenarios. This practice not only hinders the choice and use of a suitable scheme for a watermarking application, but also leads to debate about the state-of-the-art for different watermarking applications. With a view to the systematic development of watermarking schemes, we present a formal generic model for digital image watermarking. Considering possible inputs, outputs, and component functions, the initial construction of a basic watermarking model is developed further to incorporate the use of keys. On the basis of our proposed model, fundamental watermarking properties are defined and their importance exemplified for different image applications. We also define a set of possible attacks using our model showing different winning scenarios depending on the adversary capabilities. It is envisaged that with a proper consideration of watermarking properties and adversary actions in different image applications, use of the proposed model would allow a unified treatment of all practically meaningful variants of watermarking schemes.