74 resultados para Hidropsia fetal
Resumo:
Ureaplasma species are the microorganisms most frequently associated with adverse pregnancy outcomes. The multiple banded antigen (MBA), a surface-exposed lipoprotein, is a key virulence factor of ureaplasmas. The MBA demonstrates size variation, which we have shown previously to be correlated with the severity of chorioamnion inflammation. We aimed to investigate U. parvum serovar 3 pathogenesis in vivo, using a sheep model, by investigating: MBA variation after long term (chronic) and short term (acute) durations of in utero ureaplasma infections, and the severity of chorioamnionitis and inflammation in other fetal tissues. Inocula of 2x107 colony-forming-units (CFU) of U. parvum serovar 3 (Up) or media controls (C) were injected intra-amniotically into pregnant ewes at one of three time points: day 55 (69d Up, n=8; C69, n=4); day 117 (7d Up, n=8; C7, n=2); and day 121 (3d Up, n=8; C3, n=2) of gestation (term=145-150d). At day 124, preterm fetuses were delivered surgically. Samples of chorioamnion, fetal lung, and umbilical cord were: (i) snap frozen for subsequent ureaplasma culture, and (ii) fixed, embedded, sectioned and stained by haematoxylin and eosin stain for histological analysis. Selected fetal lung clinical ureaplasma isolates were cloned and filtered to obtain cultures from a single CFU. Passage 1 and clone 2 ureaplasma cultures were tested by western blot to demonstrate MBA variation. In acute durations of ureaplasma infection no MBA variants (3d Up) or very few MBA variants (7d Up) were present when compared to the original inoculum. However, numerous MBA size variants were generated in vivo (alike within contiguous tissues, amniotic fluid and fetal lung, but different variants were present within chorioamnion), during chronic, 69d exposure to ureaplasma infection. For the first time we have shown that the degree of ureaplasma MBA variation in vivo increased with the duration of gestation.
Resumo:
Background: We have developed a sheep model of intrauterine ureaplasma infection. We aimed to examine the capability of ureaplasmas in the amniotic fluid to infect the fetus and alter fetal development...
Resumo:
Early preterm birth (<32 weeks) is associated with in utero infection and inflammation. We used an ovine model of in utero infection to ask if exposure to Ureaplasma serovar 3 (UP) modulated the response of the fetal skin to LPS.
Resumo:
Early preterm birth (<32 weeks) is associated with in utero infection and inflammation. We used an ovine model of in utero infection to ask if exposure to Ureaplasma serovar 3 (UP) modulated the response of the fetal skin to LPS.
Resumo:
Purpose: One of the challenges associated with cell-based therapies for repairing the retina is the development of suitable materials on which to grow and transplant retinal cells. Using the ARPE-19 cell line, we have previously demonstrated the feasibility of growing RPE-derived cells on membranes prepared from the silk protein fibroin. The present study was aimed at developing a porous, ultra-thin fibroin membrane that might better support development of apical-basal polarity in culture, and to extend this work to primary cultures of human RPE cells. Methods: Ultra-thin fibroin membranes were prepared using a highly polished casting table coated with Topas® (a cyclic olefin copolymer) and a 1:0.03 aqueous solution of fibroin and PEO (Mv 900 000 g/mol). Following drying, the membranes were water annealed to make them water-stable, washed in water to remove PEO, sterilised by treatment with 95% ethanol, and washed extensively in saline. Primary cultures containing human RPE cells were established from donor posterior eye cups and maintained in DMEM/F12 medium supplemented with 10% fetal bovine serum and antibiotics. First passage cultures were seeded onto fibroin membranes pre-coated with vitronectin and grown for 6 weeks in medium supplemented with 1% serum. Comparative cultures were established on porous 1.0 µm pore PET membrane (Millipore) and using ARPE-19 cells. Results: The fibroin membranes displayed an average thickness of 3 µm and contained numerous dimples/pore-like structures of up to 3-5 µm in diameter. The primary cultures predominantly contained pigmented epithelial cells, but mesenchymal cells (presumed fibroblasts) were also often present. Passaged cultures appeared to attach equally well to either fibroin or PET membranes. Over time cells on either material adopted a more cobblestoned morphology. Conclusions: Progress has been made towards developing a porous ultra-thin fibroin membrane that supports cultivation of RPE cells. Further studies are required to determine the degree of membrane permeability and RPE polarity.
Resumo:
Purpose: The silk protein fibroin provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial cells (Tissue Eng A. 14(2008)1203-11). We presently extend this body of work to studies of human limbal stromal cell (HLS) growth on fibroin in the presence and absence of serum. Methods: Primary cultures of HLS cells were established in DMEM/F12 medium supplemented with either 10% fetal bovine serum (FBS) or 2% B27 supplement. Defined keratinocyte serum-free medium (DK-SFM, Invitrogen) was also tested. The resulting cultures were analysed by flow cytometry for expression of CD34, CD90, CD45, and CD141. Cultures grown under each condition were subsequently passaged either onto transparent fibroin membranes prepared from purified fibroin or within 3D scaffolds prepared from partially-solubilised fibroin. Results: HLS cultures were successfully established under each condition, but grew more slowly and passaged poorly in the absence of serum. Cultures grown in 10% FBS were <0.5% CD34+ (keratocytes) and >97% CD90+ (fibroblasts). Cultures established in 2% B27 formed floating spheres and contained >8% CD34+ cells and reduced CD90 expression. Cultures established in DK-SFM displayed traces of epithelial cell growth (CD141), but mostly consisted of CD90+ cells with <1% CD34+ cells. Cells of bone marrow lineage (CD45) were rarely observed under any conditions. Cultures grown in 10% FBS were able to adhere to and proliferate on silk fibroin 3-D scaffolds and transparent films while those grown serum-free could not. Adhesion of HLS cells to fibroin was initially poorer than that displayed on tissue culture plastic. Conclusions: HLS cultures containing cells of predominantly fibroblast lineage can be grown on fibroin-based materials, but this process is dependent upon additional ECM factors such as those provided by serum.
Resumo:
Burn injury is associated with disabling scar formation which impacts on many aspects of the patient's life. Previously we have shown that the fetus heals a deep dermal burn in a scarless fashion. Amniotic membrane (AM) is the outermost fetal tisue and has beeen used as a dressing in thermal injuries, though there is little data to support this use. To assess the efficacy of AM in scar minimisation after deep dermal burn wound, we conducted a randomised controlled study in the 1-month lamb. Lambs were delivered by caesarian section and the amniotic membranes stored after which lambs were returned to their mothers post-operatively. At 1 month, a standardised deep dermal burn was created under general anaesthesia on both flanks of the lamb. One flank was covered with unmatched AM, the other with paraffin gauze. Animals were sequentially euthanased from Day 3-60 after injury and tissue analysed for histopathology and immunohistochemically for alpha-smooth muscle actin (alphaSMA) content. AM resulted in reduced scar tissue as assessed histopathologically and reduced alphaSMA content. This study provides the first laboratory evidence that AM may reduce scar formation after burn injury.
Resumo:
Early to mid-term fetuses heal cutaneous incisional wounds without scars; however, fetal response to burn injury has not been ascertained. We present a fetal model of thermal injury and subsequent analysis of fetal and lamb response to burn injury. A reproducible deep dermal burn injury was created in the fetus by application of water at 66 degrees C for 7 seconds, and at 82 degrees C for 10 seconds to the lamb. Macroscopically, the area of fetal scald was undetectable from day 7 post injury, while all lamb scalds were readily identified and eventually healed with scarring. Using a five-point histopathology scoring system for alteration in tissue morphology, differences were detected between control and scalded skin at all stages in lamb postburn, but no difference was detected in the fetal model after day 7. There were also large differences in content of alpha-smooth muscle actin and transforming growth factor-beta1 between control and scalded lamb and these differences were statistically significant at day 14 (P < 0.01). This novel model of fetal and lamb response to deep dermal injury indicates that the fetus heals a deep burn injury in a scarless fashion. Further elucidation of this specific fetal process of burn injury repair may lead to improved outcome for patients with burn injury.
Resumo:
Background Women born outside Australia make up more than a fifth of the Queensland birthing population and like migrants in other parts of the world face the challenges of cultural dislocation and possible language barriers. Recognising that labour and birth are major life events the aim was to investigate the experiences of these women in comparison to native-born English speaking women. Methods Secondary analysis of data from a population based survey of women who had recently birthed in Queensland. Self-reported clinical outcomes and quality of interpersonal care of 481 women born outside Australia who spoke a language other than English at home were compared with those of 5569 Australian born women speaking only English. Results After adjustment for demographic factors and type of birthing facility, women born in another country were less likely to be induced, but more likely to have constant electronic fetal monitoring (EFM), to give birth lying on their back or side, and to have an episiotomy. Most women felt that they were treated as an individual and with kindness and respect. However, women born outside Australia were less likely to report being looked after ‘very well’ during labour and birth and to be more critical of some aspects of care. Conclusion In comparing the labour and birth experiences of women born outside the country who spoke another language with native-born English speaking women, the present study presents a largely positive picture. However, there were some marked differences in both clinical and interpersonal aspects of care.
Resumo:
Recent developments in genetic science will potentially have a significant impact on reproductive decision-making by adding to the list of conditions which can be diagnosed through prenatal diagnosis. This article analyses the jurisdictional variations that exist in Australian abortion laws and examines the extent to which Australian abortion laws specifically provide for termination of pregnancy on the grounds of fetal disability. The article also examines the potential impact of pre-implantation genetic diagnosis on reproductive decision-making and considers the meaning of reproductive autonomy in the context of the new genetics.
Resumo:
This review will focus on the role of sphingosine and its phosphorylated derivative sphingosine-1-phosphate (SPP) in cell growth regulation and signal transduction. We will show that many of the effects attributed to sphingosine in quiescent Swiss 3T3 fibroblasts are mediated via its conversion to SPP. We propose that SPP has appropriate properties to function as an intracellular second messenger based on the following: it elicits diverse cellular responses; it is rapidly produced from sphingosine by a specific kinase and rapidly degraded by a specific lyase; its concentration is low in quiescent cells but increases rapidly and transiently in response to the growth factors, fetal calf serum (FCS) and platelet derived growth factor (PDGF); it releases Ca2+ from internal sources in an InsP3-independent manner; and finally, it may link sphingolipid signaling pathways to cellular ras-mediated signaling pathways by elevating phosphatidic acid levels. The effects of this novel second messenger on growth, differentiation and invasion of human breast cancer cells will be discussed. © 1994 Kluwer Academic Publishers.
Resumo:
Blood vascular cells and lymphatic endothelial cells (BECs and LECs, respectively) form two separate vascular systems and are functionally distinct cell types or lineages with characteristic gene expression profiles. Interconversion between these cell types has not been reported. Here, we show that in conventional in vitro angiogenesis assays, human BECs of fetal or adult origin show altered gene expression that is indicative of transition to a lymphatic-like phenotype. This change occurs in BECs undergoing tubulogenesis in fibrin, collagen or Matrigel assays, but is independent of tube formation per se, because it is not inhibited by a metalloproteinase inhibitor that blocks tubulogenesis. It is also reversible, since cells removed from 3D tubules revert to a BEC expression profile upon monolayer culture. Induction of the lymphatic-like phenotype is partially inhibited by co-culture of HUVECs with perivascular cells. These data reveal an unexpected plasticity in endothelial phenotype, which is regulated by contact with the ECM environment and/or cues from supporting cells.
Resumo:
Colonisation of the maternal uterine wall by the trophoblast involves a series of alterations in the behaviour and morphology of trophoblast cells. Villous cytotrophoblast cells change from a well-organised coherently layered phenotype to one that is extravillous, acquiring a proliferative, migratory and invasive capacity, to facilitate fetal-maternal interaction. These changes are similar to those of other developmental processes falling under the umbrella of an epithelial-mesenchymal transition (EMT). Modulation of cell adhesion and cell polarity occurs through changes in cell-cell junctional molecules, such as the cadherins. The cadherins, particularly the classical cadherins (e.g. Epithelial-(E)-cadherin), and their link to adaptors called catenins at cell-cell contacts, are important for maintaining cell attachment and the layered phenotype of the villous cytotrophoblast. In contrast, reduced expression and re-organization of cadherins from these cell junctional regions promote a loosened connection between cells, coupled with reduced apico-basal polarity. Certain non-classical cadherins play an active role in cell migration processes. In addition to the classical cadherins, two other cadherins which have been reported in placental tissues are vascular endothelial (VE) cadherin and cadherin-11. Cadherin molecules are well placed to be key regulators of trophoblast cell behaviour, analogous to their role in other developmental EMTs. This review addresses cadherin expression and function in normal and diseased human placental tissues, especially in fetal growth restriction and pre-eclampsia where trophoblast invasion is reduced.
Resumo:
The peritubular zone of the rat testis has an extensive extracellular matrix (ECM). Fibronectin (FN) is distributed primarily in the basal lamina of the seminiferous tubule boundary tissue and is synthesized by peritubular myoid cells. Several extracellular changes are mediated by growth factors and these changes occur at the time of hormone mediated testicular development, particularly in the peritubular zone. The effects of serum or dibutyryl cyclic AMP (cAMP) on FN production by the mesenchymal peritubular myoid cells were evaluated. Rats of various ages (10, 15, 20, 40 and 80 days) were employed for immunofluorescent localization of rat testicular FN in frozen sections. In all age groups tested, FN was primarily present in a broad layer around each seminiferous tubule, and blood vessel, and in variable distribution throughout the interstitial stroma. By day 20 there was no clear distinction in FN staining between the peritubular zone and the interstitial tissue. This indicates an involvement of FN in the ECM developments which occur in the peritubular zone of the testis at this time. The peritubular myoid cells were isolated from 20-22 day old rat testis and cultured on glass coverslips. These cells were grown to confluence with 10% fetal calf serum (FCS) in medium until day 4 and then subcultured to have secondary monocultures maintained with or without serum. By means of immunofluorescence and cytochemistry using avidin-biotin peroxidase complex it was observed that peritubular myoid cells were positive for FN and most of the FN was localized in the perinuclear region. Subcultured peritubular myoid cells maintained for 4 days in medium containing FCS developed an extensive interconnecting FN matrix. In the presence of 0.5 mM cAMP in culture, FN became localized along the filamentous process of peritubular myoid cells and more prominently in the areas of triangulated multi-cell aggregates as well as on the surface of the contracted small spherical cells. The addition of cAMP in the presence of FCS, also caused a noticeable change in the staining pattern; FN was detected along the filamentous process developing into a complex network of cells encased in an extensive matrix. It would appear that the translocation of FN in the cytoplasmic extensions of peritubular myoid cells may be a direct consequence of morphological changes associated with metabolic regulation of cAMP. This may also be related to the puberty associated development of in vivo changes in the ECM produced by peritubular myoid cells.
Resumo:
This project characterised the bone microarchitecture of adult mice lacking the hormone, acyl ghrelin, by high resolution micro-computed tomography; and investigated the expression of the ghrelin axis in cells of human and mouse fetal cartilage. This thesis highlights for the first time the physiological role of the ghrelin axis in the bone microenvironment of aged mice. Furthermore it improves our understanding of the complex expression patterns of the ghrelin axis in cartilage cells of human and mouse fetal skeletons.