194 resultados para Heat waves (Meteorology)
Resumo:
Hayabusa, an unmanned Japanese spacecraft, was launched to study and collect samples from the surface of the asteroid 25143 Itokawa. In June 2010, the Hayabusa spacecraft completed it’s seven year voyage. The spacecraft and the sample return capsule (SRC) re-entered the Earth’s atmosphere over the central Australian desert at speeds on the order of 12 km/s. This provided a rare opportunity to experimentally investigate the radiative heat transfer from the shock-compressed gases in front of the sample return capsule at true-flight conditions. This paper reports on the results of observations from a tracking camera situated on the ground about 100 km from where the capsule experienced peak heating during re-entry.
Resumo:
The aim of the research program was to evaluate the heat strain, hydration status, and heat illness symptoms experienced by surface mine workers. An initial investigation involved 91 surface miners completing a heat stress questionnaire; assessing the work environment, hydration practices, and heat illness symptom experience. The key findings included 1) more than 80 % of workers experienced at least one symptom of heat illness over a 12 month period; and 2) the risk of moderate symptoms of heat illness increased with the severity of dehydration. These findings highlight a health and safety concern for surface miners, as experiencing symptoms of heat illness is an indication that the physiological systems of the body may be struggling to meet the demands of thermoregulation. To illuminate these findings a field investigation to monitor the heat strain and hydration status of surface miners was proposed. Two preliminary studies were conducted to ensure accurate and reliable data collection techniques. Firstly, a study was undertaken to determine a calibration procedure to ensure the accuracy of core body temperature measurement via an ingestible sensor. A water bath was heated to several temperatures between 23 . 51 ¢ªC, allowing for comparison of the temperature recorded by the sensors and a traceable thermometer. A positive systematic bias was observed and indicated a need for calibration. It was concluded that a linear regression should be developed for each sensor prior to ingestion, allowing for a correction to be applied to the raw data. Secondly, hydration status was to be assessed through urine specific gravity measurement. It was foreseeable that practical limitations on mine sites would delay the time between urine collection and analysis. A study was undertaken to assess the reliability of urine analysis over time. Measurement of urine specific gravity was found to be reliable up to 24 hours post urine collection and was suitable to be used in the field study. Twenty-nine surface miners (14 drillers [winter] and 15 blast crew [summer]) were monitored during a normal work shift. Core body temperature was recorded continuously. Average mean core body temperature was 37.5 and 37.4 ¢ªC for blast crew and drillers, with average maximum body temperatures of 38.0 and 37.9 ¢ªC respectively. The highest body temperature recorded was 38.4 ¢ªC. Urine samples were collected at each void for specific gravity measurement. The average mean urine specific gravity was 1.024 and 1.021 for blast crew and drillers respectively. The Heat Illness Symptoms Index was used to evaluate the experience of heat illness symptoms on shift. Over 70 % of drillers and over 80 % of blast crew reported at least one symptom. It was concluded that 1) heat strain remained within the recommended limits for acclimatised workers; and 2) the majority of workers were dehydrated before commencing their shift, and tend to remain dehydrated for the duration. Dehydration was identified as the primary issue for surface miners working in the heat. Therefore continued study focused on investigating a novel approach to monitoring hydration status. The final aim of this research program was to investigate the influence dehydration has on intraocular pressure (IOP); and subsequently, whether IOP could provide a novel indicator of hydration status. Seven males completed 90 minutes of walking in both a cool and hot climate with fluid restriction. Hydration variables and intraocular pressure were measured at baseline and at 30 minute intervals. Participants became dehydrated during the trial in the heat but maintained hydration status in the cool. Intraocular pressure progressively declined in the trial in the heat but remained relatively stable when hydration was maintained. A significant relationship was observed between intraocular pressure and both body mass loss and plasma osmolality. This evidence suggests that intraocular pressure is influenced by changes in hydration status. Further research is required to determine if intraocular pressure could be utilised as an indirect indicator of hydration status.
Resumo:
The heat transfer through the attics of buildings under realistic thermal forcing has been considered in this study. A periodic temperature boundary condition is applied on the sloping walls of the attic to show the basic flow features in the attic space over diurnal cycles. The numerical results reveal that, during the daytime heating stage, the flow in the attic space is stratified; whereas at the night-time cooling stage, the flow becomes unstable. A symmetrical solution is seen for relatively low Rayleigh numbers. However, as the Ra gradually increases, a transition occurs at a critical value of Ra. Above this critical value, an asymmetrical solution exhibiting a pitchfork bifurcation arises at the night-time. It is also found that the calculated heat transfer rate at the night-time cooling stage is much higher than that during the daytime heating stage.
Resumo:
In the present study we investigate the effect of viscous dissipation on natural convection from a vertical plate placed in a thermally stratified environment. The reduced equations are integrated by employing the implicit finite difference scheme of Keller box method and obtained the effect of heat due to viscous dissipation on the local skin friction and local Nusselt number at various stratification levels, for fluids having Prandtl numbers of 10, 50, and 100. Solutions are also obtained using the perturbation technique for small values of viscous dissipation parameters $\xi$ and compared to the finite difference solutions for 0 · $\xi$ · 1. Effect of viscous dissipation and temperature stratification are also shown on the velocity and temperature distributions in the boundary layer region.
Resumo:
Unsteady natural convection inside a triangular cavity subject to a non-instantaneous heating on the inclined walls in the form of an imposed temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the flow from start-up to a steady-state has been described based on scaling analyses and direct numerical simulations. The ramp temperature has been chosen in such a way that the boundary layer is reached a quasi-steady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness, then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently. It is seen that the shape of many houses are isosceles triangular cross-section. The heat transfer process through the roof of the attic-shaped space should be well understood. Because, in the building energy, one of the most important objectives for design and construction of houses is to provide thermal comfort for occupants. Moreover, in the present energy-conscious society it is also a requirement for houses to be energy efficient, i.e. the energy consumption for heating or air-conditioning houses must be minimized.
Resumo:
This paper presents a review of studies on natural convection heat transfer in the triangular enclosure namely, in attic-shaped space. Much research activity has been devoted to this topic over the last three decades with a view to providing thermal comfort to the occupants in attic-shaped buildings and to minimising the energy costs associated with heating and air-conditioning. Two basic thermal boundary conditions of attic are considered to represent hot and cold climates or day and night time. This paper also reports on a significant number of studies which have been performed recently on other topics related to the attic space, for example, attics subject to localized heating and attics filled with porous media.
Resumo:
Background: Heat-related mortality is a matter of great public health concern, especially in the light of climate change. Although many studies have found associations between high temperatures and mortality, more research is needed to project the future impacts of climate change on heat-related mortality. Objectives: We conducted a systematic review of research and methods for projecting future heat-related mortality under climate change scenarios. Data sources and extraction: A literature search was conducted in August 2010, using the electronic databases PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English up to 2010. Data synthesis: The review included 14 studies that fulfilled the inclusion criteria. Most projections showed that climate change would result in a substantial increase in heat-related mortality. Projecting heat-related mortality requires understanding of the historical temperature-mortality relationships, and consideration of the future changes in climate, population and acclimatization. Further research is needed to provide a stronger theoretical framework for projections, including a better understanding of socio-economic development, adaptation strategies, land-use patterns, air pollution and mortality displacement. Conclusions: Scenario-based projection research will meaningfully contribute to assessing and managing the potential impacts of climate change on heat-related mortality.
Resumo:
In this study, we consider how Fractional Differential Equations (FDEs) can be used to study the travelling wave phenomena in parabolic equations. As our method is conducted under intracellular environments that are highly crowded, it was discovered that there is a simple relationship between the travelling wave speed and obstacle density.
Resumo:
Higher-order spectral analysis is used to detect the presence of secondary and tertiary forced waves associated with the nonlinearity of energetic swell observed in 8- and 13-m water depths. Higher-order spectral analysis techniques are first described and then applied to the field data, followed by a summary of the results.
Resumo:
Natural convection flow from an isothermal vertical plate with uniform heat source embedded in a stratified medium has been discussed in this paper. The resulting momentum and energy equations of boundary layer approximation are made non-similar by introducing the usual non-similarity transformations. Numerical solutions of these equations are obtained by an implicit finite difference method for a wide range of the stratification parameter, X. The solutions are also obtained for different values of pertinent parameters, namely, the Prandtl number, Pr and the heat generation or absorption parameter, λ and are expressed in terms of the local skin-friction and local heat transfer, which are shown in the graphical form. Effect of heat generation or absorption on the streamlines and isotherms are also shown graphically for different values of λ.
Resumo:
A new scaling analysis has been performed for the unsteady natural convection boundary layer under a downward facing inclined plate with uniform heat flux. The development of the thermal or viscous boundary layers may be classified into three distinct stages including a start-up stage, a transitional stage and a steady stage, which can be clearly identified in the analytical as well as numerical results. Earlier scaling shows that the existing scaling laws of the boundary layer thickness, velocity and steady state time scale for the natural convection flow on a heated plate of uniform heat flux provide a very poor prediction of the Prandtl number dependency of the flow. However, those scalings performed very well with Rayleigh number and aspect ratio dependency. In this study, a new Prandtl number scaling has been developed using a triple-layer integral approach for Pr > 1. It is seen that in comparison to the direct numerical simulations, the new scaling performs considerably better than the previous scaling.
Resumo:
Unsteady natural convection inside a triangular cavity has been studied in this study. The cavity is filled with a saturated porous medium with non-isothermal left inclined wall while the bottom surface is isothermally heated and the right inclined surface is isothermally cold. An internal heat generation is also considered which is dependent of the fluid temperature. The governing equations are solved numerically by finite element method. The Prandtl number of the fluid is considered as 0.7 (air) while the aspect ratio and the Rayleigh number are considered as 0.5 and 105 respectively. The effect of the porosity of the medium and heat generation on the fluid flow and heat transfer have been presented as a form of streamlines and isotherms. The rate of heat transfer through three surfaces of the enclosure is also presented.