238 resultados para Halley’s and Euler-Chebyshev’s Methods
Resumo:
Schizophrenia is a serious mental disorder currently undergoing a renaissance of scientific interest. This book summarizes current knowledge and details some of the recent developments. Divided into three sections, it presents an overview of the disorder, including its features, social impact and aetiology; reviews methods of assessing the symptoms and disabilities of schizophrenia and examining the sufferer's social environment; and discusses a range of interventions, from pharmacological treatment to skill training for individuals and families. Issues that arise in planning services for sufferers and their families are also reviewed. All of the chapters focus on clinical practice and many include guides to assessment and practice. This handbook should be particularly useful in training health professionals in psychiatric/mental health services and general practice. It also aims to offer practitioners and researchers a comprehensive update on schizophrenia that is both easy to read and practical in its focus.
Resumo:
Aims: Dietary glycemic index (GI) and glycemic load (GL) have been associated with risk of chronic diseases, yet limited research exists on patterns of consumption in Australia. Our aims were to investigate glycemic carbohydrate in a population of older women, identify major contributing food sources, and determine low, moderate and high ranges. Methods: Subjects were 459 Brisbane women aged 42-81 years participating in the Longitudinal Assessment of Ageing in Women. Diet history interviews were used to assess usual diet and results were analysed into energy and macronutrients using the FoodWorks dietary analysis program combined with a customised GI database. Results: Mean±SD dietary GI was 55.6±4.4% and mean dietary GL was 115±25. A low GI in this population was ≤52.0, corresponding to the lowest quintile of dietary GI, and a low GL was ≤95. GI showed a quadratic relationship with age (P=0.01), with a slight decrease observed in women aged in their 60’s relative to younger or older women. GL decreased linearly with age (P<0.001). Bread was the main contributor to carbohydrate and dietary GL (17.1% and 20.8%, respectively), followed by fruit (15.5% and 14.2%), and dairy for carbohydrate (9.0%) or breakfast cereals for GL (8.9%). Conclusions: In this population, dietary GL decreased with increasing age, however this was likely to be a result of higher energy intakes in younger women. Focus on careful selection of lower GI items within bread and breakfast cereal food groups would be an effective strategy for decreasing dietary GL in this population of older women.
Resumo:
Introduction The purpose of this study was to develop, implement and evaluate the impact of an educational intervention, comprising an innovative model of clinical decisionmaking and educational delivery strategy for facilitating nursing students‘ learning and development of competence in paediatric physical assessment practices. Background of the study Nursing students have an undergraduate education that aims to produce graduates of a generalist nature who demonstrate entry level competence for providing nursing care in a variety of health settings. Consistent with population morbidity and health care roles, paediatric nursing concepts typically form a comparatively small part of undergraduate curricula and students‘ exposure to paediatric physical assessment concepts and principles are brief. However, the nursing shortage has changed traditional nursing employment patterns and new graduates form the majority of the recruitment pool for paediatric nursing speciality staff. Paediatric nursing is a popular career choice for graduates and anecdotal evidence suggests that nursing students who select a clinical placement in their final year intend to seek employment in paediatrics upon graduation. Although concepts of paediatric nursing are included within undergraduate curriculum, students‘ ability to develop the required habits of mind to practice in what is still regarded as a speciality area of practice is somewhat limited. One of the areas of practice where this particularly impacts is in paediatric nursing physical assessment. Physical assessment is a fundamental component of nursing practice and competence in this area of practice is central to nursing students‘ development of clinical capability for practice as a registered nurse. Timely recognition of physiologic deterioration of patients is a key outcome of nurses‘ competent use of physical assessment strategies, regardless of the practice context. In paediatric nursing contexts children‘s physical assessment practices must specifically accommodate the child‘s different physiological composition, function and pattern of clinical deterioration (Hockenberry & Barrera, 2007). Thus, to effectively manage physical assessment of patients within the paediatric practice setting nursing students need to integrate paediatric nursing theory into their practice. This requires significant information processing and it is in this process where students are frequently challenged. The provision of rules or models can guide practice and assist novice-level nurses to develop their capabilities (Benner, 1984; Benner, Hooper-Kyriakidis & Stannard, 1999). Nursing practice models are cognitive tools that represent simplified patterns of expert analysis employing concepts that suit the limited reasoning of the inexperienced, and can represent the =rules‘ referred to by Benner (1984). Without a practice model of physical assessment students are likely to be uncertain about how to proceed with data collection, the interpretation of paediatric clinical findings and the appraisal of findings. These circumstances can result in ad hoc and unreliable nursing physical assessment that forms a poor basis for nursing decisions. The educational intervention developed as part of this study sought to resolve this problem and support nursing students‘ development of competence in paediatric physical assessment. Methods This study utilised the Context Input Process Product (CIPP) Model by Stufflebeam (2004) as the theoretical framework that underpinned the research design and evaluation methodology. Each of the four elements in the CIPP model were utilised to guide discrete stages of this study. The Context element informed design of the clinical decision-making process, the Paediatric Nursing Physical Assessment model. The Input element was utilised in appraising relevant literature, identifying an appropriate instructional methodology to facilitate learning and educational intervention delivery to undergraduate nursing students, and development of program content (the CD-ROM kit). Study One employed the Process element and used expert panel approaches to review and refine instructional methods, identifying potential barriers to obtaining an effective evaluation outcome. The Product element guided design and implementation of Study Two, which was conducted in two phases. Phase One employed a quasiexperimental between-subjects methodology to evaluate the impact of the educational intervention on nursing students‘ clinical performance and selfappraisal of practices in paediatric physical assessment. Phase Two employed a thematic analysis and explored the experiences and perspectives of a sample subgroup of nursing students who used the PNPA CD-ROM kit as preparation for paediatric clinical placement. Results Results from the Process review in Study One indicated that the prototype CDROM kit containing the PNPA model met the predetermined benchmarks for face validity and the impact evaluation instrumentation had adequate content validity in comparison with predetermined benchmarks. In the first phase of Study Two the educational intervention did not result in statistically significant differences in measures of student performance or self-appraisal of practice. However, in Phase Two qualitative commentary from students, and from the expert panel who reviewed the prototype CD-ROM kit (Study One, Phase One), strongly endorsed the quality of the intervention and its potential for supporting learning. This raises questions regarding transfer of learning and it is likely that, within this study, several factors have influenced students‘ transfer of learning from the educational intervention to the clinical practice environment, where outcomes were measured. Conclusion In summary, the educational intervention employed in this study provides insights into the potential e-learning approaches offer for delivering authentic learning experiences to undergraduate nursing students. Findings in this study raise important questions regarding possible pedagogical influences on learning outcomes, issues within the transfer of theory to practice and factors that may have influenced findings within the context of this study. This study makes a unique contribution to nursing education, specifically with respect to progressing an understanding of the challenges faced in employing instructive methods to impact upon nursing students‘ development of competence. The important contribution transfer of learning processes make to students‘ transition into the professional practice context and to their development of competence within the context of speciality practice is also highlighted. This study contributes to a greater awareness of the complexity of translating theoretical learning at undergraduate level into clinical practice, particularly within speciality contexts.
Resumo:
Aging in humans is associated with a loss in neuromuscular function and performance. This is related, in part, to the reduction in muscular strength and power caused by a loss of skeletal muscle mass (sarcopenia) and changes in muscle architecture. Due to these changes, the force-velocity (f-v) relationship of human muscles alters with age. This change has functional implications such as slower walking speeds. Different methods to reverse these changes have been investigated, including traditional resistance training, power training and eccentric (or eccentrically-biased) resistance training. This review will summarise the changes of the f-v relationship with age, the functional implications of these changes and the various methods to reverse or at least partly ameliorate these changes.
Resumo:
- Background Substance use is common among gay/bisexual men and is associated with significant health risks (e.g. HIV transmission). The consequences of substance use, across the range of substances commonly used, have received little attention. The purpose of this study is to map participant’s beliefs about the effects of substance use to inform prevention, health promotion and clinical interventions. - Methods Participants were interviewed about experiences regarding their substance use and recruited through medical and sexual health clinics. Data were collected though a consumer panel and individual interviews. Responses regarding perceived consequences of substance use were coded using Consensual Qualitative Research (CQR) methodology. - Results Most participants reported lifetime use of alcohol, cannabis, stimulants and amyl nitrite, and recent alcohol and cannabis use. A wide range of themes were identified regarding participant’s thoughts, emotions and behaviours (including sexual behaviours) secondary to substance use, including: cognitive functioning, mood, social interaction, physical effects, sexual activity, sexual risk-taking, perception of sexual experience, arousal, sensation, relaxation, disinhibition, energy/activity level and numbing. Analyses indicated several consequences were consistent across substance types (e.g. cognitive impairment, enhanced mood), whereas others were highly specific to a given substance (e.g. heightened arousal post amyl nitrite use). - Conclusions Prevention and interventions need to consider the variety of effects of substance use in tailoring effective education programs to reduce harms. A diversity of consequences appear to have direct and indirect impacts on decision-making, sexual activity and risk-taking. Findings lend support for the role of specific beliefs (e.g. expectancies) related to substance use on risk-related cognitions, emotions and behaviours.
Resumo:
Campylobacter jejuni followed by Campylobacter coli contribute substantially to the economic and public health burden attributed to food-borne infections in Australia. Genotypic characterisation of isolates has provided new insights into the epidemiology and pathogenesis of C. jejuni and C. coli. However, currently available methods are not conducive to large scale epidemiological investigations that are necessary to elucidate the global epidemiology of these common food-borne pathogens. This research aims to develop high resolution C. jejuni and C. coli genotyping schemes that are convenient for high throughput applications. Real-time PCR and High Resolution Melt (HRM) analysis are fundamental to the genotyping schemes developed in this study and enable rapid, cost effective, interrogation of a range of different polymorphic sites within the Campylobacter genome. While the sources and routes of transmission of campylobacters are unclear, handling and consumption of poultry meat is frequently associated with human campylobacteriosis in Australia. Therefore, chicken derived C. jejuni and C. coli isolates were used to develop and verify the methods described in this study. The first aim of this study describes the application of MLST-SNP (Multi Locus Sequence Typing Single Nucleotide Polymorphisms) + binary typing to 87 chicken C. jejuni isolates using real-time PCR analysis. These typing schemes were developed previously by our research group using isolates from campylobacteriosis patients. This present study showed that SNP + binary typing alone or in combination are effective at detecting epidemiological linkage between chicken derived Campylobacter isolates and enable data comparisons with other MLST based investigations. SNP + binary types obtained from chicken isolates in this study were compared with a previously SNP + binary and MLST typed set of human isolates. Common genotypes between the two collections of isolates were identified and ST-524 represented a clone that could be worth monitoring in the chicken meat industry. In contrast, ST-48, mainly associated with bovine hosts, was abundant in the human isolates. This genotype was, however, absent in the chicken isolates, indicating the role of non-poultry sources in causing human Campylobacter infections. This demonstrates the potential application of SNP + binary typing for epidemiological investigations and source tracing. While MLST SNPs and binary genes comprise the more stable backbone of the Campylobacter genome and are indicative of long term epidemiological linkage of the isolates, the development of a High Resolution Melt (HRM) based curve analysis method to interrogate the hypervariable Campylobacter flagellin encoding gene (flaA) is described in Aim 2 of this study. The flaA gene product appears to be an important pathogenicity determinant of campylobacters and is therefore a popular target for genotyping, especially for short term epidemiological studies such as outbreak investigations. HRM curve analysis based flaA interrogation is a single-step closed-tube method that provides portable data that can be easily shared and accessed. Critical to the development of flaA HRM was the use of flaA specific primers that did not amplify the flaB gene. HRM curve analysis flaA interrogation was successful at discriminating the 47 sequence variants identified within the 87 C. jejuni and 15 C. coli isolates and correlated to the epidemiological background of the isolates. In the combinatorial format, the resolving power of flaA was additive to that of SNP + binary typing and CRISPR (Clustered regularly spaced short Palindromic repeats) HRM and fits the PHRANA (Progressive hierarchical resolving assays using nucleic acids) approach for genotyping. The use of statistical methods to analyse the HRM data enhanced sophistication of the method. Therefore, flaA HRM is a rapid and cost effective alternative to gel- or sequence-based flaA typing schemes. Aim 3 of this study describes the development of a novel bioinformatics driven method to interrogate Campylobacter MLST gene fragments using HRM, and is called ‘SNP Nucleated Minim MLST’ or ‘Minim typing’. The method involves HRM interrogation of MLST fragments that encompass highly informative “Nucleating SNPS” to ensure high resolution. Selection of fragments potentially suited to HRM analysis was conducted in silico using i) “Minimum SNPs” and ii) the new ’HRMtype’ software packages. Species specific sets of six “Nucleating SNPs” and six HRM fragments were identified for both C. jejuni and C. coli to ensure high typeability and resolution relevant to the MLST database. ‘Minim typing’ was tested empirically by typing 15 C. jejuni and five C. coli isolates. The association of clonal complexes (CC) to each isolate by ‘Minim typing’ and SNP + binary typing were used to compare the two MLST interrogation schemes. The CCs linked with each C. jejuni isolate were consistent for both methods. Thus, ‘Minim typing’ is an efficient and cost effective method to interrogate MLST genes. However, it is not expected to be independent, or meet the resolution of, sequence based MLST gene interrogation. ‘Minim typing’ in combination with flaA HRM is envisaged to comprise a highly resolving combinatorial typing scheme developed around the HRM platform and is amenable to automation and multiplexing. The genotyping techniques described in this thesis involve the combinatorial interrogation of differentially evolving genetic markers on the unified real-time PCR and HRM platform. They provide high resolution and are simple, cost effective and ideally suited to rapid and high throughput genotyping for these common food-borne pathogens.
Resumo:
Theory-of-Mind has been defined as the ability to explain and predict human behaviour by imputing mental states, such as attention, intention, desire, emotion, perception and belief, to the self and others (Astington & Barriault, 2001). Theory-of-Mind study began with Piaget and continued through a tradition of meta-cognitive research projects (Flavell, 2004). A study by Baron-Cohen, Leslie and Frith (1985) of Theory-of-Mind abilities in atypically developing children reported major difficulties experienced by children with autism spectrum disorder (ASD) in imputing mental states to others. Since then, a wide range of follow-up research has been conducted to confirm these results. Traditional Theory-of-Mind research on ASD has been based on an either-or assumption that Theory-of-Mind is something one either possesses or does not. However, this approach fails to take account of how the ASD population themselves experience Theory-of-Mind. This paper suggests an alternative approach, Theory-of-Mind continuum model, to understand the Theory-of-Mind experience of people with ASD. The Theory-of-Mind continuum model will be developed through a comparison of subjective and objective aspects of mind, and phenomenal and psychological concepts of mind. This paper will demonstrate the importance of balancing qualitative and quantitative research methods in investigating the minds of people with ASD. It will enrich our theoretical understanding of Theory-of-Mind, as well as contain methodological implications for further studies in Theory-of-Mind
Resumo:
Objective: During hospitalisation older people often experience functional decline which impacts on their future independence. The objective of this study was to evaluate a multifaceted transitional care intervention including home-based exercise strategies for at-risk older people on functional status, independence in activities of daily living, and walking ability. Methods: A randomised controlled trial was undertaken in a metropolitan hospital in Australia with 128 patients (64 intervention, 64 control) aged over 65 years with an acute medical admission and at least one risk factor for hospital readmission. The intervention group received an individually tailored program for exercise and follow-up care which was commenced in hospital and included regular visits in hospital by a physiotherapist and a Registered Nurse, a home visit following discharge, and regular telephone follow-up for 24 weeks following discharge. The program was designed to improve health promoting behaviours, strength, stability, endurance and mobility. Data were collected at baseline, then 4, 12 and 24 weeks following discharge using the Index of Activities of Daily Living (ADL), Instrumental Index of Activities of Daily Living (IADL), and the Walking Impairment Questionnaire (Modified). Results: Significant improvements were found in the intervention group in IADL scores (p<.001), ADL scores (p<.001), and WIQ scale scores (p<.001) in comparison to the control group. The greatest improvements were found in the first four weeks following discharge. Conclusions: Early introduction of a transitional model of care incorporating a tailored exercise program and regular telephone follow-up for hospitalised at-risk older adults can improve independence and functional ability.
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.
Resumo:
Advances in symptom management strategies through a better understanding of cancer symptom clusters depend on the identification of symptom clusters that are valid and reliable. The purpose of this exploratory research was to investigate alternative analytical approaches to identify symptom clusters for patients with cancer, using readily accessible statistical methods, and to justify which methods of identification may be appropriate for this context. Three studies were undertaken: (1) a systematic review of the literature, to identify analytical methods commonly used for symptom cluster identification for cancer patients; (2) a secondary data analysis to identify symptom clusters and compare alternative methods, as a guide to best practice approaches in cross-sectional studies; and (3) a secondary data analysis to investigate the stability of symptom clusters over time. The systematic literature review identified, in 10 years prior to March 2007, 13 cross-sectional studies implementing multivariate methods to identify cancer related symptom clusters. The methods commonly used to group symptoms were exploratory factor analysis, hierarchical cluster analysis and principal components analysis. Common factor analysis methods were recommended as the best practice cross-sectional methods for cancer symptom cluster identification. A comparison of alternative common factor analysis methods was conducted, in a secondary analysis of a sample of 219 ambulatory cancer patients with mixed diagnoses, assessed within one month of commencing chemotherapy treatment. Principal axis factoring, unweighted least squares and image factor analysis identified five consistent symptom clusters, based on patient self-reported distress ratings of 42 physical symptoms. Extraction of an additional cluster was necessary when using alpha factor analysis to determine clinically relevant symptom clusters. The recommended approaches for symptom cluster identification using nonmultivariate normal data were: principal axis factoring or unweighted least squares for factor extraction, followed by oblique rotation; and use of the scree plot and Minimum Average Partial procedure to determine the number of factors. In contrast to other studies which typically interpret pattern coefficients alone, in these studies symptom clusters were determined on the basis of structure coefficients. This approach was adopted for the stability of the results as structure coefficients are correlations between factors and symptoms unaffected by the correlations between factors. Symptoms could be associated with multiple clusters as a foundation for investigating potential interventions. The stability of these five symptom clusters was investigated in separate common factor analyses, 6 and 12 months after chemotherapy commenced. Five qualitatively consistent symptom clusters were identified over time (Musculoskeletal-discomforts/lethargy, Oral-discomforts, Gastrointestinaldiscomforts, Vasomotor-symptoms, Gastrointestinal-toxicities), but at 12 months two additional clusters were determined (Lethargy and Gastrointestinal/digestive symptoms). Future studies should include physical, psychological, and cognitive symptoms. Further investigation of the identified symptom clusters is required for validation, to examine causality, and potentially to suggest interventions for symptom management. Future studies should use longitudinal analyses to investigate change in symptom clusters, the influence of patient related factors, and the impact on outcomes (e.g., daily functioning) over time.
Resumo:
Structural health is a vital aspect of infrastructure sustainability. As a part of a vital infrastructure and transportation network, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs are a difficult burden for infrastructure owners. The structural health monitoring (SHM) systems proposed recently are incorporated with vibration-based damage detection techniques, statistical methods and signal processing techniques and have been regarded as efficient and economical ways to assess bridge condition and foresee probable costly failures. In this chapter, the recent developments in damage detection and condition assessment techniques based on vibration-based damage detection and statistical methods are reviewed. The vibration-based damage detection methods based on changes in natural frequencies, curvature or strain modes, modal strain energy, dynamic flexibility, artificial neural networks, before and after damage, and other signal processing methods such as Wavelet techniques, empirical mode decomposition and Hilbert spectrum methods are discussed in this chapter.
Resumo:
Expert knowledge is valuable in many modelling endeavours, particularly where data is not extensive or sufficiently robust. In Bayesian statistics, expert opinion may be formulated as informative priors, to provide an honest reflection of the current state of knowledge, before updating this with new information. Technology is increasingly being exploited to help support the process of eliciting such information. This paper reviews the benefits that have been gained from utilizing technology in this way. These benefits can be structured within a six-step elicitation design framework proposed recently (Low Choy et al., 2009). We assume that the purpose of elicitation is to formulate a Bayesian statistical prior, either to provide a standalone expert-defined model, or for updating new data within a Bayesian analysis. We also assume that the model has been pre-specified before selecting the software. In this case, technology has the most to offer to: targeting what experts know (E2), eliciting and encoding expert opinions (E4), whilst enhancing accuracy (E5), and providing an effective and efficient protocol (E6). Benefits include: -providing an environment with familiar nuances (to make the expert comfortable) where experts can explore their knowledge from various perspectives (E2); -automating tedious or repetitive tasks, thereby minimizing calculation errors, as well as encouraging interaction between elicitors and experts (E5); -cognitive gains by educating users, enabling instant feedback (E2, E4-E5), and providing alternative methods of communicating assessments and feedback information, since experts think and learn differently; and -ensuring a repeatable and transparent protocol is used (E6).
Resumo:
Defining the precise promoter DNA sequence motifs where nuclear receptors and other transcription factors bind is an essential prerequisite for understanding how these proteins modulate the expression of their specific target genes. The purpose of this chapter is to provide the reader with a detailed guide with respect to the materials and the key methods required to perform this type of DNA-binding analysis. Irrespective of whether starting with purified DNA-binding proteins or somewhat crude cellular extracts, the tried-and-true procedures described here will enable one to accurately access the capacity of specific proteins to bind to DNA as well as to determine the exact sequences and DNA contact nucleotides involved. For illustrative purposes, we primarily have used the interaction of the androgen receptor with the rat probasin proximal promoter as our model system.
Resumo:
Objective: The aim of the present study was to investigate whether parent report of family resilience predicted children’s disaster-induced post-traumatic stress disorder (PTSD) and general emotional symptoms, independent of a broad range of variables including event-related factors, previous child mental illness and social connectedness. ---------- Methods: A total of 568 children (mean age = 10.2 years, SD = 1.3) who attended public primary schools, were screened 3 months after Cyclone Larry devastated the Innisfail region of North Queensland. Measures included parent report on the Family Resilience Measure and Strengths and Difficulties Questionnaire (SDQ)–emotional subscale and child report on the PTSD Reaction Index, measures of event exposure and social connectedness. ---------- Results: Sixty-four students (11.3%) were in the severe–very severe PTSD category and 53 families (28.6%) scored in the poor family resilience range. A lower family resilience score was associated with child emotional problems on the SDQ and longer duration of previous child mental health difficulties, but not disaster-induced child PTSD or child threat perception on either bivariate analysis, or as a main or moderator variable on multivariate analysis (main effect: adjusted odds ratio (ORadj) = 0.57, 95% confidence interval (CI) = 0.13–2.44). Similarly, previous mental illness was not a significant predictor of child PTSD in the multivariate model (ORadj = 0.75, 95%CI = 0.16–3.61). ---------- Conclusion: In this post-disaster sample children with existing mental health problems and those of low-resilience families were not at elevated risk of PTSD. The possibility that the aetiological model of disaster-induced child PTSD may differ from usual child and adolescent conceptualizations is discussed.
Resumo:
Purpose: To investigate the influence of accommodation upon axial length (and a comprehensive range of ocular biometric parameters), in populations of young adult myopic and emmetropic subjects. Methods: Forty young adult subjects had ocular biometry measured utilizing a non-contact optical biometer (Lenstar LS 900) based upon the principle of optical low coherence reflectometry, under three different accommodation demands (0 D, 3 D and 6 D). Subjects were classified as emmetropes (n=19) or myopes (n=21) based upon their spherical equivalent refraction (mean emmetropic refraction -0.05 ± 0.27DS and mean myopic refraction -1.82 ± 0.84 DS). Results: Axial length changed significantly with accommodation, with a mean increase of 11.9 ± 12.3 µm and 24.1 ± 22.7 µm for the 3 D and 6 D accommodation stimuli respectively. A significant axial elongation associated with accommodation was still evident even following correction of the axial length data for potential error due to lens thickness change. The mean ‘corrected’ increase in axial length was 5.2 ± 11.2 µm, and 7.4 ± 18.9 µm for the 3 D and 6 D stimuli respectively. There was no significant difference between the myopic and emmetropic populations in terms of the magnitude of change in axial length with accommodation, regardless of whether the data were corrected or not. A number of other ocular biometric parameters, such as anterior chamber depth, lens thickness and vitreous chamber depth also exhibited significant change with accommodation. The myopic and emmetropic populations also exhibited no significant difference in the magnitude of change in these parameters with accommodation. Conclusions: The eye undergoes a significant axial elongation associated with a brief period of accommodation, and the magnitude of this change in eye length increases for larger accommodation demands, however there is no significant difference in the magnitude of eye elongation in myopic and emmetropic subjects.