57 resultados para Haidar Ali, Nawab of Mysore, ca. 1722-1782.
Resumo:
The bright blue minerals cavansite and pentagonite, a calcium vanadium silicate Ca(V4+O)Si4O10.4H2O, have been studied by UV–Visible, Raman and infrared spectroscopy. Cavansite shows an open porous structure with very small micron sized holes. Strong UV–Visible absorption bands are observed at around 403, 614 and 789 nm for cavansite and pentagonite. The Raman spectrum of cavansite is dominated by an intense band at 981 cm -1 and pentagonite by a band at 971 cm-1 attributed to the stretching vibrations of (SiO3)n units. Cavansite is characterised by two intense bands at 574 and 672 cm-1 whereas pentagonite by a single band at 651 cm-1. The Raman spectrum of cavansite in the hydroxyl stretching region shows bands at 3504, 3546, 3577, 3604 and 3654 cm-1 whereas pentagonite is a single band at 3532 cm_1. These bands are attributed to water coordinated to calcium and vanadium. XPS studies show that bond energy of oxygen in oxides is 530 eV, and in hydroxides -531.5 eV and for water -533.5 eV. XPS studies show a strong peak at 531.5 eV for cavansite, indicating some OH units in the structure of cavansite.
Resumo:
The mineral xonotlite Ca 6Si 6O 17(OH) 2 is a crystalline calcium silicate hydrate which is widely used in plaster boards and in many industrial applications. The structure of xonotlite is best described as having a dreierdoppelketten silicate structure, and describes the repeating silicate trimer which forms the silicate chains, and doppel indicating that two chains combine. Raman bands at 1042 and 1070 cm -1 are assigned to the SiO stretching vibrations of linked units of Si 4O 11 units. Raman bands at 961 and 980 cm -1 serve to identify Si 3O 10 units. The broad Raman band at 862 cm -1 is attributed to hydroxyl deformation modes. Intense Raman bands at 593 and 695 cm -1 are assigned to OSiO bending vibrations. Intense Raman bands at 3578, 3611, 3627 and 3665 cm -1 are assigned to OH stretching vibrations of the OH units in xonotlite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the building material xonotlite.
Resumo:
Superconducting thick films of Bi2Sr2CaCu2Oy (Bi-2212) on single-crystalline (100) MgO substrates have been prepared using a doctor-blade technique and a partial-melt process. It is found that the phase composition and the amount of Ag addition to the paste affect the structure and superconducting properties of the partially melted thick films. The optimum heat treatment schedule for obtaining high Jc has been determined for each paste. The heat treatment ensures attainment of high purity for the crystalline Bi-2212 phase and high orientation of Bi-2212 crystals, in which the c-axis is perpendicular to the substrate. The highest Tc, obtained by resistivity measurement, is 92.2 K. The best value for Jct (transport) of these thick films, measured at 77 K in self-field, is 8 × 10 3 Acm -2.
Resumo:
The microstructure of Bi-Sr-Ca-Cu-oxide (BSCCO) thick films on alumina substrates has been characterized using a combination of X-ray diffractometry, scanning electron microscopy, transmission electron microscopy of sections across the film/substrate interface and energy-dispersive X-ray spectrometry. A reaction layer formed between the BSCCO films and the alumina substrates. This chemical interaction is largely responsible for off-stoichiometry of the films and is more significant after partial melting of the films. A new phase with fee structure, lattice parameter a = 2.45 nm and approximate composition Al3Sr2CaBi2CuOx has been identified as reaction product between BSCCO and Al2O3.
Resumo:
Organo Arizona SAz-2 Ca-montmorillonite was prepared with different surfactant (DDTMA and HDTMA) loadings through direct ion exchange. The structural properties of the prepared organoclays were characterized by XRD and BET instruments. Batch experiments were carried out on the adsorption of bisphenol A (BPA) under different experimental conditions of pH and temperature to determine the optimum adsorption conditions. The hydrophobic phase and positively charged surface created by the loaded surfactant molecules are responsible for the adsorption of BPA. The adsorption of BPA onto organoclays is well described by pseudo-second order kinetic model and the Langmuir isotherm. The maximum adsorption capacity of the organoclays for BPA obtained from a Langmuir isotherm was 151.52 mg/g at 297 K. This value is among the highest values for BPA adsorption compared with other adsorbents. In addition, the adsorption process was spontaneous and exothermic based on the adsorption thermodynamics study. The organoclays intercalated with longer chain surfactant molecules possessed a greater adsorption capacity for BPA even under alkaline conditions. This process provides a pathway for the removal of BPA from contaminated waters.
Resumo:
Background The microenvironment plays a pivotal role in tumor cell proliferation, survival and migration. Invasive cancer cells face a new set of environmental challenges as they breach the basement membrane and colonize distant organs during the process of metastasis. Phenotypic switching, such as that which occurs during epithelial-mesenchymal transition (EMT), may be associated with a remodeling of cell surface receptors and thus altered responses to signals from the tumor microenvironment. Methodology/Principal Findings We assessed changes in intracellular Ca 2+ in cells loaded with Fluo-4 AM using a fluorometric imaging plate reader (FLIPR TETRA) and observed significant changes in the potency of ATP (EC 50 0.175 μM (-EGF) versus 1.731 μM (+EGF), P<0.05), and the nature of the ATP-induced Ca 2+ transient, corresponding with a 10-fold increase in the mesenchymal marker vimentin (P<0.05). We observed no change in the sensitivity to PAR2-mediated Ca 2+ signaling, indicating that these alterations are not simply a consequence of changes in global Ca 2+ homeostasis. To determine whether changes in ATP-mediated Ca 2+ signaling are preceded by alterations in the transcriptional profile of purinergic receptors, we analyzed the expression of a panel of P2X ionotropic and P2Y metabotropic purinergic receptors using real-time RT-PCR and found significant and specific alterations in the suite of ATP-activated purinergic receptors during EGF-induced EMT in breast cancer cells. Our studies are the first to show that P2X 5 ionotropic receptors are enriched in the mesenchymal phenotype and that silencing of P2X 5 leads to a significant reduction (25%, P<0.05) in EGF-induced vimentin protein expression. Conclusions The acquisition of a new suite of cell surface purinergic receptors is a feature of EGF-mediated EMT in MDA-MB-468 breast cancer cells. Such changes may impart advantageous phenotypic traits and represent a novel mechanism for the targeting of cancer metastasis.
Resumo:
The mineral meliphanite (Ca,Na)2Be[(Si,Al)2O6(F,OH)] is a crystalline sodium calcium beryllium silicate which has the potential to be used as piezoelectric material and for other ferroelectric applications. The mineral has been characterized by a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and vibrational spectroscopy. EDS analysis shows a material with high concentrations of Si and Ca and low amounts of Na, Al and F. Beryllium was not detected. Raman bands at 1016 and 1050 cm−1 are assigned to the SiO and AlOH stretching vibrations of three dimensional siloxane units. The infrared spectrum of meliphanite is very broad in comparison with the Raman spectrum. Raman bands at 472 and 510 cm−1 are assigned to OSiO bending modes. Raman spectroscopy identifies bands in the OH stretching region. Raman spectroscopy with complimentary infrared spectroscopy enables the characterization of the silicate mineral meliphanite.
Resumo:
Samples of marble from Chillagoe, North Queensland have been analyzed using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. Chemical analyses provide evidence for the presence of minerals other than limestone and calcite in the marble, including silicate minerals. Some of these analyses correspond to silicate minerals. The Raman spectra of these crystals were obtained and the Raman spectrum corresponds to that of allanite from the Arizona State University data base (RRUFF) data base. The combination of SEM with EDS and Raman spectroscopy enables the characterization of the mineral allanite in the Chillagoe marble.
Resumo:
A modified inorganic bentonite (Na/Al) based on purified Ca-bentonite was prepared through exchanging Al and Na ions in the interlayer space of Ca-bentonite. The structural properties of purified and modified bentonites were characterized by XRD and SEM analysis. Batch experiments were performed for the adsorption of ammonium nitrogen and different experimental conditions were studied in order to investigate the optimum adsorption conditions. Comparative experiments were also carried out for natural Ca-bentonite (RB), unmodified purified bentonite (PB) and modified purified bentonite (MB). Through the thermodynamic analysis, the ammonium nitrogen adsorption process can be spontaneous, the standard heat was −41.46kJmol −1 , and the adsorption process based on ion exchange adsorption. The ammonium nitrogen adsorption capacity of MB (46.904mg/g) was improved compared to raw bentonite (RB) (26.631mg/g), which was among the highest values of ammonium nitrogen adsorption compared with other adsorbents according to the literatures. The described process provides a potential pathway for the removal of ammonium nitrogen at low concentrations encountered in most natural waters.
Resumo:
Depolymerization of purified organosolv eucalyptus wood lignin by the heterogeneous catalysts, cobalt polyphosphate (CoP2O6) and calcium phosphate (β-CaP2O6) was investigated. A total syringol yield of 16.7% was achieved with β-CaP2O6 in a methanol/water (50/50, wt/wt) solvent system after depolymerization at 300 ºC for 1 h, showing selectivity of the catalyst.
Resumo:
Steel columns in frame structure always carry heavy upcoming compressive forces. As a consequence, axial shortening becomes a common phenomenon in a multistoried steel structure. A 100 storied steel structure is analyzed in SAP2000 to study the magnitude overall effects of column shortening. It was found from the study that the maximum axial shortening occurs at the columns of top storey of the steel structure and at the columns of bottom storey, the axial deformation is negligible. The increasing rate of axial shortening is significant at the initial levels. However, at the upper levels, the amount of axial shortening in steel columns differs insignificantly. In the selected rigid frame structure, the axial shortening of adjacent steel columns is found to influence significantly the differential shortening of the structure. The consequent effect of differential shortening leads to develop excessive stress in the corner joints which ultimately hamper the normal behavior of the structural systems. The results are discussed elaborately in the paper.
Resumo:
The pH and salinity balance mechanisms of crayfish are controlled by a set of transport-related genes. We identified a set of the genes from the gill transcriptome from a freshwater crayfish Cherax quadricarinatus using the Illumina NGS-sequencing technology. We identified and characterized carbonic anhydrase (CA) genes and some other key genes involved in systematic acid-base balance and osmotic/ionic regulation. We also examined expression patterns of some of these genes across different sublethal pH levels [1]. A total of 72,382,710 paired-end Illumina reads were assembled into 36,128 contigs with an average length of 800 bp. About 37% of the contigs received significant BLAST hits and 22% were assigned gene ontology terms. These data will assist in further physiological-genomic studies in crayfish.