199 resultados para HARDWARE
Resumo:
The mechanisms of helicopter flight create a unique, high-vibration environment which can play havoc with the accurate operation of on-board sensors. Vibration isolation of electronic sensors from structural borne oscillations is paramount to their reliable and accurate use. Effective isolation is achieved by realising a trade-off between the properties of the suspended instrument package, and the isolation mechanism. This is made more difficult as the weight and size of the sensors and computing hardware decreases with advances in technology. This paper presents a history of the design, challenges, constraints and construction of an integrated isolated vision and sensor platform and landing gear for the CSIRO autonomous X-Cell helicopter. The results of isolation performance and in-flight tests of the platform in autonomous flight are presented.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Resumo:
Stereo vision is a method of depth perception, in which depth information is inferred from two (or more) images of a scene, taken from different perspectives. Practical applications for stereo vision include aerial photogrammetry, autonomous vehicle guidance, robotics and industrial automation. The initial motivation behind this work was to produce a stereo vision sensor for mining automation applications. For such applications, the input stereo images would consist of close range scenes of rocks. A fundamental problem faced by matching algorithms is the matching or correspondence problem. This problem involves locating corresponding points or features in two images. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This work implemented a number of areabased matching algorithms to assess their suitability for this application. Area-based techniques were investigated because of their potential to yield dense depth maps, their amenability to fast hardware implementation, and their suitability to textured scenes such as rocks. In addition, two non-parametric transforms, the rank and census, were also compared. Both the rank and the census transforms were found to result in improved reliability of matching in the presence of radiometric distortion - significant since radiometric distortion is a problem which commonly arises in practice. In addition, they have low computational complexity, making them amenable to fast hardware implementation. Therefore, it was decided that matching algorithms using these transforms would be the subject of the remainder of the thesis. An analytic expression for the process of matching using the rank transform was derived from first principles. This work resulted in a number of important contributions. Firstly, the derivation process resulted in one constraint which must be satisfied for a correct match. This was termed the rank constraint. The theoretical derivation of this constraint is in contrast to the existing matching constraints which have little theoretical basis. Experimental work with actual and contrived stereo pairs has shown that the new constraint is capable of resolving ambiguous matches, thereby improving match reliability. Secondly, a novel matching algorithm incorporating the rank constraint has been proposed. This algorithm was tested using a number of stereo pairs. In all cases, the modified algorithm consistently resulted in an increased proportion of correct matches. Finally, the rank constraint was used to devise a new method for identifying regions of an image where the rank transform, and hence matching, are more susceptible to noise. The rank constraint was also incorporated into a new hybrid matching algorithm, where it was combined a number of other ideas. These included the use of an image pyramid for match prediction, and a method of edge localisation to improve match accuracy in the vicinity of edges. Experimental results obtained from the new algorithm showed that the algorithm is able to remove a large proportion of invalid matches, and improve match accuracy.
Resumo:
The rapid growth in the number of online services leads to an increasing number of different digital identities each user needs to manage. As a result, many people feel overloaded with credentials, which in turn negatively impact their ability to manage them securely. Passwords are perhaps the most common type of credential used today. To avoid the tedious task of remembering difficult passwords, users often behave less securely by using low entropy and weak passwords. Weak passwords and bad password habits represent security threats to online services. Some solutions have been developed to eliminate the need for users to create and manage passwords. A typical solution is based on giving the user a hardware token that generates one-time-passwords, i.e. passwords for single session or transaction usage. Unfortunately, most of these solutions do not satisfy scalability and/or usability requirements, or they are simply insecure. In this paper, we propose a scalable OTP solution using mobile phones and based on trusted computing technology that combines enhanced usability with strong security.
Resumo:
BACKGROUND: The standard treatment for a non-union of the hallux metatarsophalangeal joint fusion has been to revise the fusion. Revision fusion is technically more demanding, often involving bone grafting, more substantial fixation and prolonged period of immobilization postoperatively. We present data to suggest that removal of hardware and debridement alone is an alternative treatment option. ---------- MATERIALS AND METHODS: A case note review identified patients with a symptomatic non-union after hallux metatarsophalangeal joint (MTPJ) fusion. It is our practice to offer these patients revision fusion or removal of hardware and debridement. For the seven patients that chose hardware removal and were left with a pseudarthrosis, a matched control group was selected from patients who had had successful fusions. Three outcome scores were used. Hallux valgus and dorsiflexion angles were recorded.---------- RESULTS: One hundred thirty-nine hallux MTPJ arthrodeses were carried out. Fourteen non-unions were identified. The rate of non-union in males and following previous hallux MTPJ surgery was 19% and 24%, respectively. In females undergoing a primary MTPJ fusion, the rate was 2.4%. Twelve non-union patients were reviewed at 27 months (mean). Eleven patients had elected to undergo removal of hardware and debridement. Four patients with pseudarthrosis were unhappy with the results and proceeded to either revision fusion or MTPJ replacement. Seven non-union patients, who had removal of hardware alone, had outcome scores marginally worse compared to those with successful fusions.---------- CONCLUSION: Removal of hardware alone is a reasonable option to offer as a relatively minor procedure following a failed arthrodesis of the first MTPJ. This must be accepted on the proviso that in this study four out of 11 (36%) patients proceeded to a revision first MTPJ fusion or first MTPJ replacement. We also found that the rate of non-union in primary first MTPJ fusion was significantly higher in males and those patients who had undergone previous surgery.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved. This paper describes the development of detection algorithms and the evaluation of a real-time flight ready hardware implementation of a vision-based collision detection system suitable for fixed-wing small/medium size UAS. In particular, this paper demonstrates the use of Hidden Markov filter to track and estimate the elevation (β) and bearing (α) of the target, compares several candidate graphic processing hardware choices, and proposes an image based visual servoing approach to achieve collision avoidance
Resumo:
The Denial of Service Testing Framework (dosTF) being developed as part of the joint India-Australia research project for ‘Protecting Critical Infrastructure from Denial of Service Attacks’ allows for the construction, monitoring and management of emulated Distributed Denial of Service attacks using modest hardware resources. The purpose of the testbed is to study the effectiveness of different DDoS mitigation strategies and to allow for the testing of defense appliances. Experiments are saved and edited in XML as abstract descriptions of an attack/defense strategy that is only mapped to real resources at run-time. It also provides a web-application portal interface that can start, stop and monitor an attack remotely. Rather than monitoring a service under attack indirectly, by observing traffic and general system parameters, monitoring of the target application is performed directly in real time via a customised SNMP agent.
Resumo:
This paper presents a novel approach to road-traffic control for interconnected junctions. With a local fuzzy-logic controller (FLC) installed at each junction, a dynamic-programming (DP) technique is proposed to derive the green time for each phase in a traffic-light cycle. Coordination parameters from the adjacent junctions are also taken into consideration so that organized control is extended beyond a single junction. Instead of pursuing the absolute optimization of traffic delay, this study examines a practical approach to enable the simple implementation of coordination among junctions, while attempting to reduce delays, if possible. The simulation results show that the delay per vehicle can be substantially reduced, particularly when the traffic demand reaches the junction capacity. The implementation of this controller does not require complicated or demanding hardware, and such simplicity makes it a useful tool for offline studies or realtime control purposes.
Resumo:
With the advances in computer hardware and software development techniques in the past 25 years, digital computer simulation of train movement and traction systems has been widely adopted as a standard computer-aided engineering tool [1] during the design and development stages of existing and new railway systems. Simulators of different approaches and scales are used extensively to investigate various kinds of system studies. Simulation is now proven to be the cheapest means to carry out performance predication and system behaviour characterisation. When computers were first used to study railway systems, they were mainly employed to perform repetitive but time-consuming computational tasks, such as matrix manipulations for power network solution and exhaustive searches for optimal braking trajectories. With only simple high-level programming languages available at the time, full advantage of the computing hardware could not be taken. Hence, structured simulations of the whole railway system were not very common. Most applications focused on isolated parts of the railway system. It is more appropriate to regard those applications as primarily mechanised calculations rather than simulations. However, a railway system consists of a number of subsystems, such as train movement, power supply and traction drives, which inevitably contains many complexities and diversities. These subsystems interact frequently with each other while the trains are moving; and they have their special features in different railway systems. To further complicate the simulation requirements, constraints like track geometry, speed restrictions and friction have to be considered, not to mention possible non-linearities and uncertainties in the system. In order to provide a comprehensive and accurate account of system behaviour through simulation, a large amount of data has to be organised systematically to ensure easy access and efficient representation; the interactions and relationships among the subsystems should be defined explicitly. These requirements call for sophisticated and effective simulation models for each component of the system. The software development techniques available nowadays allow the evolution of such simulation models. Not only can the applicability of the simulators be largely enhanced by advanced software design, maintainability and modularity for easy understanding and further development, and portability for various hardware platforms are also encouraged. The objective of this paper is to review the development of a number of approaches to simulation models. Attention is, in particular, given to models for train movement, power supply systems and traction drives. These models have been successfully used to enable various ‘what-if’ issues to be resolved effectively in a wide range of applications, such as speed profiles, energy consumption, run times etc.
Resumo:
The authors currently engage in two projects to improve human-computer interaction (HCI) designs that can help conserve resources. The projects explore motivation and persuasion strategies relevant to ubiquitous computing systems that bring real-time consumption data into the homes and hands of residents in Brisbane, Australia. The first project seeks to increase understanding among university staff of the tangible and negative effects that excessive printing has on the workplace and local environment. The second project seeks to shift attitudes toward domestic energy conservation through software and hardware that monitor real-time, in situ electricity consumption in homes across Queensland. The insights drawn from these projects will help develop resource consumption user archetypes, providing a framework linking people to differing interface design requirements.
Resumo:
Following the completion of the draft Human Genome in 2001, genomic sequence data is becoming available at an accelerating rate, fueled by advances in sequencing and computational technology. Meanwhile, large collections of astronomical and geospatial data have allowed the creation of virtual observatories, accessible throughout the world and requiring only commodity hardware. Through a combination of advances in data management, data mining and visualization, this infrastructure enables the development of new scientific and educational applications as diverse as galaxy classification and real-time tracking of earthquakes and volcanic plumes. In the present paper, we describe steps taken along a similar path towards a virtual observatory for genomes – an immersive three-dimensional visual navigation and query system for comparative genomic data.
Resumo:
Engaging and motivating students in mathematics lessons can be challenging. The traditional approach of chalk and talk can sometimes be problematic. The new generation of educational robotics has the potential to not only motivate students but also enable teachers to demonstrate concepts in mathematics by connecting concepts with the real world. Robotics hardware and the software are becoming increasing more user-friendly and as a consequence they can be blended in with classroom activities with greater ease. Using robotics in suitably designed activities promotes a constructivist learning environment and enables students to engage in higher order thinking through hands-on problem solving. Teamwork and collaborative learning are also enhanced through the use of this technology. This paper discusses a model for teaching concepts in mathematics in middle year classrooms. It will also highlight some of the benefits and challenges of using robotics in the learning environment.
Resumo:
This paper presents the development of a low-cost sensor platform for use in ground-based visual pose estimation and scene mapping tasks. We seek to develop a technical solution using low-cost vision hardware that allows us to accurately estimate robot position for SLAM tasks. We present results from the application of a vision based pose estimation technique to simultaneously determine camera poses and scene structure. The results are generated from a dataset gathered traversing a local road at the St Lucia Campus of the University of Queensland. We show the accuracy of the pose estimation over a 1.6km trajectory in relation to GPS ground truth.