234 resultados para Growing stage
Resumo:
The transition of disc-like chromium hydroxide nanomaterials to chromium oxide nanomaterials has been studied by hot stage Raman spectroscopy. The structure and morphology of α-CrO(OH) synthesised using hydrothermal treatment was confirmed by X-ray diffraction and transmission electron microscopy. The Raman spectrum of α-CrO(OH) is characterised by two intense bands at 823 and 630 cm-1 attributed to ν1 CrIII-O symmetric stretching mode, bands at 1179 cm-1 attributed to CrIII-OH δ deformation modes. No bands are observed above 3000 cm-1. The absence of characteristic OH vibrational bands may be due to short hydrogen bonds in the α-CrO(OH) structure. Upon thermal treatment of α-CrO(OH), new Raman bands are observed at 599, 542, 513, 396, 344 and 304 cm-1, which are attributed to Cr2O3. This hot-stage Raman study shows that the transition of α-CrO(OH) to Cr2O3 occurs before 350 °C.
Resumo:
Chromium oxide gel material was synthesised and appeared to be X-ray amorphous. The changes in the structure of the synthetic chromium oxide gel were investigated using hot-stage Raman spectroscopy based upon the results of thermogravimetric analysis. The thermally decomposed product of the synthetic chromium oxide gel in nitrogen atmosphere was confirmed to be crystalline Cr2O3 as determined by the hot-stage Raman spectra. Two bands were observed at 849 and 735 cm-1 in the Raman spectrum at 25 °C, which were attributed to the symmetric stretching modes of O-CrIII-OH and O-CrIII-O. With temperature increase, the intensity of the band at 849 cm-1 decreased, while the band at 735 cm-1 increased. These changes in intensity are attributed to the loss of OH groups and formation of O-CrIII-O units in the structure. A strongly hydrogen bonded water H-O-H bending band was found at 1704 cm-1 in the Raman spectrum of the chromium oxide gel, however this band shifted to around 1590 cm-1 due to destruction of the hydrogen bonds upon thermal treatment. Six new Raman bands were observed at 578, 540, 513, 390, 342 and 303 cm-1 attributed to the thermal decomposed product Cr2O3. The use of the hot-stage Raman microscope enabled low-temperature phase changes brought about through dehydration and dehydroxylation to be studied.
Resumo:
Routing trains within passenger stations in major cities is a common scheduling problem for railway operation. Various studies have been undertaken to derive and formulate solutions to this route allocation problem (RAP) which is particularly evident in mainland China nowadays because of the growing traffic demand and limited station capacity. A reasonable solution must be selected from a set of available RAP solutions attained in the planning stage to facilitate station operation. The selection is however based on the experience of the operators only and objective evaluation of the solutions is rarely addressed. In order to maximise the utilisation of station capacity while maintaining service quality and allowing for service disturbance, quantitative evaluation of RAP solutions is highly desirable. In this study, quantitative evaluation of RAP solutions is proposed and it is enabled by a set of indices covering infrastructure utilisation, buffer times and delay propagation. The proposed evaluation is carried out on a number of RAP solutions at a real-life busy railway station in mainland China and the results highlight the effectiveness of the indices in pinpointing the strengths and weaknesses of the solutions. This study provides the necessary platform to improve the RAP solution in planning and to allow train re-routing upon service disturbances.
Resumo:
Breast conservation therapy (BCT) is the procedure of choice for the management of the early stage breast cancer. However, its utilization has not been maximized because of logistics issues associated with the protracted treatment involved with the radiation treatment. Accelerated Partial Breast Irradiation (APBI) is an approach that treats only the lumpectomy bed plus a 1-2 cm margin, rather than the whole breast. Hence because of the small volume of irradiation a higher dose can be delivered in a shorter period of time. There has been growing interest for APBI and various approaches have been developed under phase I-III clinical studies; these include multicatheter interstitial brachytherapy, balloon catheter brachytherapy, conformal external beam radiation therapy and intra-operative radiation therapy (IORT). Balloon-based brachytherapy approaches include Mammosite, Axxent electronic brachytherapy and Contura, Hybrid brachytherapy devices include SAVI and ClearPath. This paper reviews the different techniques, identifying the weaknesses and strength of each approach and proposes a direction for future research and development. It is evident that APBI will play a role in the management of a selected group of early breast cancer. However, the relative role of the different techniques is yet to be clearly identified.
Resumo:
Report for City Design, for Environment and Parks, within the Brisbane City Council. Context of this Project A Conservation Study for the Old Brisbane Botanic Gardens, formerly called the Brisbane City Botanic Gardens, was finalised in 1995 and prepared by Jeannie Sim for the Landscape Section of Brisbane City Council, the same author of the present report. This unpublished report was the first conservation plan prepared for the place and it was recommended that it be reviewed in five years time. That time has arrived finally with the preparation of the 2005 Review. The present project was commissioned by City Design on behalf of Environment and Parks Section of Brisbane City Council. The author has purposely chosen to call the study site the 'Old Brisbane Botanic Gardens' (OBBG) to differentiate it from the Brisbane Botanic Gardens, Mt. Coot-tha (BBG-MC), and to maintain the claim for this original garden to remain as a botanic garden for Brisbane. This name immediately brings to mind an association with history, as in the precedent set by the naming of the nearby 'Old Government House' at Gardens Point.
Resumo:
The widespread use of business planning in combination with the mixed theoretical and empirical support for its effect suggest research is needed that takes a deeper into the quality of plans and how they are used. In this study we longitudinally examine use vs. non-use; degree of formalizations; revision of plans, and moderation of planning effects by product novelty,among nascent firms. We relate these to attainment of profitability after 12 months. We find that business planning is negatively related to profitability, but that revising plans is positively related to profitability. Both these effects are stronger under conditions of high product novelty.
Resumo:
One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.
Resumo:
The internet by its very nature challenges an individual’s notions of propriety, moral acuity and social correctness. A tension will always exist between the censorship of obscene and sensitive information and the freedom to publish and/or access such information. Freedom of expression and communication on the internet is not a static concept: ‘Its continual regeneration is the product of particular combinations of political, legal, cultural and philosophical conditions’.
Resumo:
In the last ten years, there has been growing interest in social enterprise by governments, the not for profit sector and philanthropy in Australia The drivers of this interest have been variously understood to be: increasing demands for innovative responses to social and environmental problems; pressures on non-profit organisations to diversify their income sources; and increasing emphases by government on the role of civil society actors in partnering around social policy agendas. Whatever its genesis, very little is known about the scale and scope of the emerging social enterprise sector. In order to research the scope of the sector, an important first step involves understanding just what social enterprise is, and how it may be operationalised. This paper presents the findings from the first stage of a national research project conducted by the authors in conjunction with a new social enterprise development company. The purpose of the project was to provide a comprehensive snapshot of the social enterprise sector in Australia. In this paper, we focus on the definitional debates arising from our workshop discussions, what these mean for understanding contemporary discourses of social enterprise, and their implications for research, policy and practice.
Resumo:
AC motors are largely used in a wide range of modern systems, from household appliances to automated industry applications such as: ventilations systems, fans, pumps, conveyors and machine tool drives. Inverters are widely used in industrial and commercial applications due to the growing need for speed control in ASD systems. Fast switching transients and the common mode voltage, in interaction with parasitic capacitive couplings, may cause many unwanted problems in the ASD applications. These include shaft voltage and leakage currents. One of the inherent characteristics of Pulse Width Modulation (PWM) techniques is the generation of the common mode voltage, which is defined as the voltage between the electrical neutral of the inverter output and the ground. Shaft voltage can cause bearing currents when it exceeds the amount of breakdown voltage level of the thin lubricant film between the inner and outer rings of the bearing. This phenomenon is the main reason for early bearing failures. A rapid development in power switches technology has lead to a drastic decrement of switching rise and fall times. Because there is considerable capacitance between the stator windings and the frame, there can be a significant capacitive current (ground current escaping to earth through stray capacitors inside a motor) if the common mode voltage has high frequency components. This current leads to noises and Electromagnetic Interferences (EMI) issues in motor drive systems. These problems have been dealt with using a variety of methods which have been reported in the literature. However, cost and maintenance issues have prevented these methods from being widely accepted. Extra cost or rating of the inverter switches is usually the price to pay for such approaches. Thus, the determination of cost-effective techniques for shaft and common mode voltage reduction in ASD systems, with the focus on the first step of the design process, is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. Electrical power generation from renewable energy sources, such as wind energy systems, has become a crucial issue because of environmental problems and a predicted future shortage of traditional energy sources. Thus, Chapter 2 focuses on the shaft voltage analysis of stator-fed induction generators (IG) and Doubly Fed Induction Generators DFIGs in wind turbine applications. This shaft voltage analysis includes: topologies, high frequency modelling, calculation and mitigation techniques. A back-to-back AC-DC-AC converter is investigated in terms of shaft voltage generation in a DFIG. Different topologies of LC filter placement are analysed in an effort to eliminate the shaft voltage. Different capacitive couplings exist in the motor/generator structure and any change in design parameters affects the capacitive couplings. Thus, an appropriate design for AC motors should lead to the smallest possible shaft voltage. Calculation of the shaft voltage based on different capacitive couplings, and an investigation of the effects of different design parameters are discussed in Chapter 3. This is achieved through 2-D and 3-D finite element simulation and experimental analysis. End-winding parameters of the motor are also effective factors in the calculation of the shaft voltage and have not been taken into account in previous reported studies. Calculation of the end-winding capacitances is rather complex because of the diversity of end winding shapes and the complexity of their geometry. A comprehensive analysis of these capacitances has been carried out with 3-D finite element simulations and experimental studies to determine their effective design parameters. These are documented in Chapter 4. Results of this analysis show that, by choosing appropriate design parameters, it is possible to decrease the shaft voltage and resultant bearing current in the primary stage of generator/motor design without using any additional active and passive filter-based techniques. The common mode voltage is defined by a switching pattern and, by using the appropriate pattern; the common mode voltage level can be controlled. Therefore, any PWM pattern which eliminates or minimizes the common mode voltage will be an effective shaft voltage reduction technique. Thus, common mode voltage reduction of a three-phase AC motor supplied with a single-phase diode rectifier is the focus of Chapter 5. The proposed strategy is mainly based on proper utilization of the zero vectors. Multilevel inverters are also used in ASD systems which have more voltage levels and switching states, and can provide more possibilities to reduce common mode voltage. A description of common mode voltage of multilevel inverters is investigated in Chapter 6. Chapter 7 investigates the elimination techniques of the shaft voltage in a DFIG based on the methods presented in the literature by the use of simulation results. However, it could be shown that every solution to reduce the shaft voltage in DFIG systems has its own characteristics, and these have to be taken into account in determining the most effective strategy. Calculation of the capacitive coupling and electric fields between the outer and inner races and the balls at different motor speeds in symmetrical and asymmetrical shaft and balls positions is discussed in Chapter 8. The analysis is carried out using finite element simulations to determine the conditions which will increase the probability of high rates of bearing failure due to current discharges through the balls and races.
Resumo:
Information Overload and Mismatch are two fundamental problems affecting the effectiveness of information filtering systems. Even though both term-based and patternbased approaches have been proposed to address the problems of overload and mismatch, neither of these approaches alone can provide a satisfactory solution to address these problems. This paper presents a novel two-stage information filtering model which combines the merits of term-based and pattern-based approaches to effectively filter sheer volume of information. In particular, the first filtering stage is supported by a novel rough analysis model which efficiently removes a large number of irrelevant documents, thereby addressing the overload problem. The second filtering stage is empowered by a semantically rich pattern taxonomy mining model which effectively fetches incoming documents according to the specific information needs of a user, thereby addressing the mismatch problem. The experimental results based on the RCV1 corpus show that the proposed twostage filtering model significantly outperforms the both termbased and pattern-based information filtering models.
Resumo:
Chinese landscape architects are largely focused on objective practical solutions to environmental problems. In the West, theoretical landscape knowledge is largely conceptual and abstract. This research debated how Australian ecological concepts could or should be transposed to Chinese landscapes. This project responded to severe water and soil pollution issues in the estuarine and riparian zones of rivers flowing into Dongting Lake, in Yueyang City, Hunan Province. This work proposed a range of waterfront design innovations that challenged the notion of corridor as habitat, filter, barrier and conduit in a Chinese riparian context.
Resumo:
Video surveillance technology, based on Closed Circuit Television (CCTV) cameras, is one of the fastest growing markets in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. To overcome this limitation, it is necessary to have “intelligent” processes which are able to highlight the salient data and filter out normal conditions that do not pose a threat to security. In order to create such intelligent systems, an understanding of human behaviour, specifically, suspicious behaviour is required. One of the challenges in achieving this is that human behaviour can only be understood correctly in the context in which it appears. Although context has been exploited in the general computer vision domain, it has not been widely used in the automatic suspicious behaviour detection domain. So, it is essential that context has to be formulated, stored and used by the system in order to understand human behaviour. Finally, since surveillance systems could be modeled as largescale data stream systems, it is difficult to have a complete knowledge base. In this case, the systems need to not only continuously update their knowledge but also be able to retrieve the extracted information which is related to the given context. To address these issues, a context-based approach for detecting suspicious behaviour is proposed. In this approach, contextual information is exploited in order to make a better detection. The proposed approach utilises a data stream clustering algorithm in order to discover the behaviour classes and their frequency of occurrences from the incoming behaviour instances. Contextual information is then used in addition to the above information to detect suspicious behaviour. The proposed approach is able to detect observed, unobserved and contextual suspicious behaviour. Two case studies using video feeds taken from CAVIAR dataset and Z-block building, Queensland University of Technology are presented in order to test the proposed approach. From these experiments, it is shown that by using information about context, the proposed system is able to make a more accurate detection, especially those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information give critical feedback to the system designers to refine the system. Finally, the proposed modified Clustream algorithm enables the system to both continuously update the system’s knowledge and to effectively retrieve the information learned in a given context. The outcomes from this research are: (a) A context-based framework for automatic detecting suspicious behaviour which can be used by an intelligent video surveillance in making decisions; (b) A modified Clustream data stream clustering algorithm which continuously updates the system knowledge and is able to retrieve contextually related information effectively; and (c) An update-describe approach which extends the capability of the existing human local motion features called interest points based features to the data stream environment.
Resumo:
Since the establishment of the first national strategic development plan in the early 1970s, the construction industry has played an important role in terms of the economic, social and cultural development of Indonesia. The industry’s contribution to Indonesia’s gross domestic product (GDP) increased from 3.9% in 1973 to 7.7% in 2007. Business Monitoring International (2009) forecasts that Indonesia is home to one of the fastest-growing construction industries in Asia despite the average construction growth rate being expected to remain under 10% over the period 2006 – 2010. Similarly, Howlett and Powell (2006) place Indonesia as one of the 20 largest construction markets in 2010. Although the prospects for the Indonesian construction industry are now very promising, many local construction firms still face serious difficulties, such as poor performance and low competitiveness. There are two main reasons behind this problem: the environment that they face is not favourable; the other is the lack of strategic direction to improve competitiveness and performance. Furthermore, although strategic management has now become more widely used by many large construction firms in developed countries, practical examples and empirical studies related to the Indonesian construction industry remain scarce. In addition, research endeavours related to these topics in developing countries appear to be limited. This has potentially become one of the factors hampering efforts to guide Indonesian construction enterprises. This research aims to construct a conceptual model to enable Indonesian construction enterprises to develop a sound long-term corporate strategy that generates competitive advantage and superior performance. The conceptual model seeks to address the main prescription of a dynamic capabilities framework (Teece, Pisano & Shuen, 1997; Teece, 2007) within the context of the Indonesian construction industry. It is hypothesised that in a rapidly changing and varied environment, competitive success arises from the continuous development and reconfiguration of firm’s specific assets achieving competitive advantage is not only dependent on the exploitation of specific assets/capabilities, but on the exploitation of all of the assets and capabilities combinations in the dynamic capabilities framework. Thus, the model is refined through sequential statistical regression analyses of survey results with a sample size of 120 valid responses. The results of this study provide empirical evidence in support of the notion that a competitive advantage is achieved via the implementation of a dynamic capability framework as an important way for a construction enterprise to improve its organisational performance. The characteristics of asset-capability combinations were found to be significant determinants of the competitive advantage of the Indonesian construction enterprises, and that such advantage sequentially contributes to organisational performance. If a dynamic capabilities framework can work in the context of Indonesia, it suggests that the framework has potential applicability in other emerging and developing countries. This study also demonstrates the importance of the multi-stage nature of the model which provides a rich understanding of the dynamic process by which asset-capability should be exploited in combination by the construction firms operating in varying levels of hostility. Such findings are believed to be useful to both academics and practitioners, however, as this research represents a dynamic capabilities framework at the enterprise level, future studies should continue to explore and examine the framework in other levels of strategic management in construction as well as in other countries where different cultures or similar conditions prevails.
Resumo:
This pre-production script for a non-verbal, multimedia performance is the outcome of three rounds of creative development (2009-10) focussed on adapting a children's picture book for the stage. Protoype versions of this script were realised at work-in progress performances at the Queensland Performing Arts Complex in January 2009, and the Woodward Theatre in July 2009. Supported by the Australia Council, Arts Queensland, Windmill Theatre (SA) and QUT